Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Sep;5(9):729-742.
doi: 10.1016/S2213-8587(16)30323-0. Epub 2016 Dec 1.

Hyperinsulinaemic hypoglycaemia in children and adults

Affiliations
Review

Hyperinsulinaemic hypoglycaemia in children and adults

Pratik Shah et al. Lancet Diabetes Endocrinol. 2017 Sep.

Abstract

Pancreatic β cells are functionally programmed to release insulin in response to changes in plasma glucose concentration. Insulin secretion is precisely regulated so that, under normal physiological conditions, fasting plasma glucose concentrations are kept within a narrow range of 3·5-5·5 mmol/L. In hyperinsulinaemic hypoglycaemia, insulin secretion becomes dysregulated (ie, uncoupled from glucose metabolism) so that insulin secretion persists in the presence of low plasma glucose concentrations. Hyperinsulinaemic hypoglycaemia is the most common cause of severe and persistent hypoglycaemia in neonates and children. At a molecular level, mutations in nine different genes can lead to the dysregulation of insulin secretion and cause this disorder. In adults, hyperinsulinaemic hypoglycaemia accounts for 0·5-5·0% of cases of hypoglycaemia and can be due either to β-cell tumours (insulinomas) or β-cell hyperplasia. Rapid diagnosis and prompt management of hyperinsulinaemic hypoglycaemia is essential to avoid hypoglycaemic brain injury, especially in the vulnerable neonatal and childhood periods. Advances in the field of hyperinsulinaemic hypoglycaemia include use of rapid molecular genetic testing for the disease, application of novel imaging techniques (6-[fluoride-18]fluoro-levodopa [18F-DOPA] PET-CT and glucagon-like peptide 1 (GLP-1) receptor imaging), and development of novel medical treatments (eg, long-acting octreotide formulations, mTOR inhibitors, and GLP-1 receptor antagonists) and surgical therapies (eg, laparoscopic surgery).

PubMed Disclaimer

LinkOut - more resources