Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar 5:325:90-100.
doi: 10.1016/j.jhazmat.2016.11.023. Epub 2016 Nov 9.

Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation

Affiliations

Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation

Purna K Boruah et al. J Hazard Mater. .

Abstract

Synthesis of easily separable and eco-friendly efficient catalyst with both photocatalytic and photo-Fenton degradation properties is of great importance for environment remediation application. Herein, ammonia-modified graphene (AG) sheets decorated with Fe3O4 nanoparticles (AG/Fe3O4) as a magnetically recoverable photocatalyst by a simple in situ solution chemistry approach. First, we have functionalized graphene oxide (GO) sheets by amide functional group and then Fe3O4 nanoparticles (NPs) are doped onto the functionalized GO surface. The AG/Fe3O4 nanocomposite showed efficient photocatalytic activity towards degradation of phenol (92.43%), 2-nitrophenol (2-NP) (98%) and 2-chlorophenol (2-CP) (97.15%) within 70-120min. Consequently, in case of photo-Fenton degradation phenomenon, 93.56% phenol, 98.76% 2-NP and 98.06% of 2-CP degradation were achieved within 50-80min using AG/Fe3O4 nanocomposite under sunlight irradiation. The synergistic effect between amide functionalized graphene and Fe3O4 nanoparticles (NPs) enhances the photocatalytic activity by preventing the recombination rate of electron-hole-pair in Fe3O4 NPs. Furthermore, the remarkable reusability of the AG/Fe3O4 nanocomposite was observed up to ten cycles during the photocatalytic degradation of these phenolic compounds.

Keywords: 2-chlorophenol; 2-nitrophenol; Fe(3)O(4) nanoparticle; Graphene; Phenol; Photo-Fenton degradation; Photodegradation.

PubMed Disclaimer

LinkOut - more resources