Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Dec 2;17(12):2028.
doi: 10.3390/ijms17122028.

Exosomes as miRNA Carriers: Formation-Function-Future

Affiliations
Review

Exosomes as miRNA Carriers: Formation-Function-Future

Xiaojie Yu et al. Int J Mol Sci. .

Abstract

Exosomes, which are one of the smallest extracellular vesicles released from cells, have been shown to carry different nucleic acids, including microRNAs (miRNAs). miRNAs significantly regulate cell growth and metabolism by posttranscriptional inhibition of gene expression. The rapidly changing understanding of exosomes' formation and function in delivering miRNAs from cell to cell has prompted us to review current knowledge in exosomal miRNA secretion mechanisms as well as possible therapeutic applications for personalized medicine.

Keywords: cell metabolism; exosome; extracellular vesicle; miRNA.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Mechanism of exosomal miRNA secretion. Pri-miRNA is initially transcribed from the genome, processed by Drosha to pre-miRNA, and is then transported into cytoplasm via Exportin-5 where mature miRNA is formed. Mature miRNA is integrated into the miRISC complex and therefore targets mRNA. The P-body fuses with late endosomes and releases miRNA-containing exosomes. Exosomes are further taken up by the receptor-ligand interaction, regulating a series of gene expressions in recipient cells.

References

    1. Kalra H., Drummen G.P., Mathivanan S. Focus on extracellular vesicles: Introducing the next small big thing. Int. J. Mol. Sci. 2016;17:170. doi: 10.3390/ijms17020170. - DOI - PMC - PubMed
    1. Bastos-Amador P., Perez-Cabezas B., Izquierdo-Useros N., Puertas M.C., Martinez-Picado J., Pujol-Borrell R., Naranjo-Gomez M., Borras F.E. Capture of cell-derived microvesicles (exosomes and apoptotic bodies) by human plasmacytoid dendritic cells. J. Leukoc. Biol. 2012;91:751–758. doi: 10.1189/jlb.0111054. - DOI - PubMed
    1. Yi X., Shi X., Gao H. Cellular uptake of elastic nanoparticles. Phys. Rev. Lett. 2011;107:098101. doi: 10.1103/PhysRevLett.107.098101. - DOI - PubMed
    1. Conde-Vancells J., Rodriguez-Suarez E., Embade N., Gil D., Matthiesen R., Valle M., Elortza F., Lu S.C., Mato J.M., Falcon-Perez J.M. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J. Proteome Res. 2008;7:5157–5166. doi: 10.1021/pr8004887. - DOI - PMC - PubMed
    1. Balaj L., Atai N.A., Chen W., Mu D., Tannous B.A., Breakefield X.O., Skog J., Maguire C.A. Heparin affinity purification of extracellular vesicles. Sci. Rep. 2015;5:10266. doi: 10.1038/srep10266. - DOI - PMC - PubMed