Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Dec 5;17(1):495.
doi: 10.1186/s12859-016-1405-y.

DeepQA: improving the estimation of single protein model quality with deep belief networks

Affiliations

DeepQA: improving the estimation of single protein model quality with deep belief networks

Renzhi Cao et al. BMC Bioinformatics. .

Abstract

Background: Protein quality assessment (QA) useful for ranking and selecting protein models has long been viewed as one of the major challenges for protein tertiary structure prediction. Especially, estimating the quality of a single protein model, which is important for selecting a few good models out of a large model pool consisting of mostly low-quality models, is still a largely unsolved problem.

Results: We introduce a novel single-model quality assessment method DeepQA based on deep belief network that utilizes a number of selected features describing the quality of a model from different perspectives, such as energy, physio-chemical characteristics, and structural information. The deep belief network is trained on several large datasets consisting of models from the Critical Assessment of Protein Structure Prediction (CASP) experiments, several publicly available datasets, and models generated by our in-house ab initio method. Our experiments demonstrate that deep belief network has better performance compared to Support Vector Machines and Neural Networks on the protein model quality assessment problem, and our method DeepQA achieves the state-of-the-art performance on CASP11 dataset. It also outperformed two well-established methods in selecting good outlier models from a large set of models of mostly low quality generated by ab initio modeling methods.

Conclusion: DeepQA is a useful deep learning tool for protein single model quality assessment and protein structure prediction. The source code, executable, document and training/test datasets of DeepQA for Linux is freely available to non-commercial users at http://cactus.rnet.missouri.edu/DeepQA/ .

Keywords: Deep belief network; Machine learning; Protein model quality assessment; Protein structure prediction.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
The Deep Belief Network architecture for DeepQA

References

    1. Jacobson M, Sali A. Comparative protein structure modeling and its applications to drug discovery. Annu Rep Med Chem. 2004;39(85):259–274. doi: 10.1016/S0065-7743(04)39020-2. - DOI
    1. Li J, Cao R, Cheng J. A large-scale conformation sampling and evaluation server for protein tertiary structure prediction and its assessment in CASP11. BMC Bioinf. 2015;16(1):337. doi: 10.1186/s12859-015-0775-x. - DOI - PMC - PubMed
    1. Cao R, Cheng J. Integrated protein function prediction by mining function associations, sequences, and protein–protein and gene–gene interaction networks. Methods. 2016;93:84–91. doi: 10.1016/j.ymeth.2015.09.011. - DOI - PMC - PubMed
    1. Cao R, Bhattacharya D, Adhikari B, Li J, Cheng J. Large-scale model quality assessment for improving protein tertiary structure prediction. Bioinformatics. 2015;31(12):i116–i123. doi: 10.1093/bioinformatics/btv235. - DOI - PMC - PubMed
    1. Cao R, Jo T, Cheng J. Evaluation of protein structural models using random forests. 2016.

LinkOut - more resources