Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Nov 14;7(Suppl 33):S801-S809.
doi: 10.4103/2152-7806.194059. eCollection 2016.

3D printing in neurosurgery: A systematic review

Affiliations
Review

3D printing in neurosurgery: A systematic review

Michael Randazzo et al. Surg Neurol Int. .

Abstract

Background: The recent expansion of three-dimensional (3D) printing technology into the field of neurosurgery has prompted a widespread investigation of its utility. In this article, we review the current body of literature describing rapid prototyping techniques with applications to the practice of neurosurgery.

Methods: An extensive and systematic search of the Compendex, Scopus, and PubMed medical databases was conducted using keywords relating to 3D printing and neurosurgery. Results were manually screened for relevance to applications within the field.

Results: Of the search results, 36 articles were identified and included in this review. The articles spanned the various subspecialties of the field including cerebrovascular, neuro-oncologic, spinal, functional, and endoscopic neurosurgery.

Conclusions: We conclude that 3D printing techniques are practical and anatomically accurate methods of producing patient-specific models for surgical planning, simulation and training, tissue-engineered implants, and secondary devices. Expansion of this technology may, therefore, contribute to advancing the neurosurgical field from several standpoints.

Keywords: Additive manufacturing; surgical planning; surgical simulation; three-dimensional printing.

PubMed Disclaimer

Figures

Figure 1
Figure 1
(a) Arteriovenous malformation. Using stereolithography (.STL) files created from DICOM images, the authors have generated models of a patient's vascular malformation. Using specialized software, arterial and venous phases can be segmented within the model. (b, c): Low-grade glioma and white matter tracts. Using diffusion tractography data, a patient's white matter anatomy (corpus callosum, arcute fasciculus, corticospinal tract) and tumor were similarly generated. In the composite model (c), a scaffold has been printed to support the structure during prototyping. Using an alkaline solution, the scaffold is dissolved

References

    1. Abla AA, Lawton MT. Three-dimensional hollow intracranial aneurysm models and their potential role for teaching, simulation, and training. World Neurosurg. 2015;83:35–6. - PubMed
    1. Anderson JR, Thompson WL, Alkattan AK, Diaz O, Klucznik R, Zhang YJ, et al. Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models. J Neurointerv Surg. 2016;8:517–20. - PubMed
    1. Bova FJ, Rajon DA, Friedman WA, Murad GJ, Hoh DJ, Jacob RP, et al. Mixed-reality simulation for neurosurgical procedures. Neurosurgery. 2013;73:138–45. - PubMed
    1. Gatto M, Memoli G, Shaw A, Sadhoo N, Gelat P, Harris RA. Three-Dimensional Printing (3DP) of neonatal head phantom for ultrasound: Thermocouple embedding and simulation of bone. Med Eng Phys. 2012;34:929–37. - PubMed
    1. Hirata M, Morris S, Sugata H, Matsushita K, Yanagisawa T, Kishima H, et al. Patient-specific contour-fitting sheet electrodes for electrocorticographic brain machine interfaces. Conf Proc IEEE Eng Med Biol Soc 2014. 2014:5204–7. - PubMed