Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Dec 7;8(368):368ra172.
doi: 10.1126/scitranslmed.aag0976.

AZD3759, a BBB-penetrating EGFR inhibitor for the treatment of EGFR mutant NSCLC with CNS metastases

Affiliations

AZD3759, a BBB-penetrating EGFR inhibitor for the treatment of EGFR mutant NSCLC with CNS metastases

Zhenfan Yang et al. Sci Transl Med. .

Abstract

Non-small-cell lung cancer patients with activating mutations in epidermal growth factor receptor (EGFR) respond to EGFR tyrosine kinase inhibitor (TKI) treatment. Nevertheless, patients often develop central nervous system (CNS) metastases during treatment, even when their extracranial tumors are still under control. In the absence of effective options, much higher doses of EGFR TKIs have been attempted clinically, with the goal of achieving high enough drug concentrations within the CNS. Although limited tumor responses have been observed with this approach, the toxicities outside the CNS have been too high to tolerate. We report the discovery and early clinical development of AZD3759, a selective EGFR inhibitor that can fully penetrate the blood-brain barrier (BBB), with equal free concentrations in the blood, cerebrospinal fluid, and brain tissue. Treatment with AZD3759 causes tumor regression in subcutaneous xenograft, leptomeningeal metastasis (LM), and brain metastasis (BM) lung cancer models and prevents the development of BM in nude mice. An early clinical study in patients with BM and LM treated with AZD3759 confirms its BBB-penetrant properties and antitumor activities. Our data demonstrate the potential of AZD3759 for the treatment of BM and LM and support its further clinical evaluation in larger trials.

PubMed Disclaimer

MeSH terms