Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016;40(5):969-981.
doi: 10.1159/000453154. Epub 2016 Dec 7.

Lipotoxic Palmitate Impairs the Rate of β-Oxidation and Citric Acid Cycle Flux in Rat Neonatal Cardiomyocytes

Affiliations
Free article

Lipotoxic Palmitate Impairs the Rate of β-Oxidation and Citric Acid Cycle Flux in Rat Neonatal Cardiomyocytes

Taha Haffar et al. Cell Physiol Biochem. 2016.
Free article

Abstract

Background/aims: Diabetic hearts exhibit intracellular lipid accumulation. This suggests that the degree of fatty acid oxidation (FAO) in these hearts is insufficient to handle the elevated lipid uptake. We previously showed that palmitate impaired the rate of FAO in primary rat neonatal cardiomyocytes. Here we were interested in characterizing the site of FAO impairment induced by palmitate since it may shed light on the metabolic dysfunction that leads to lipid accumulation in diabetic hearts.

Methods: We measured fatty acid oxidation, acetyl-CoA oxidation, and carnitine palmitoyl transferase (Cpt1b) activity. We measured both forward and reverse aconitase activity, as well as NAD+ dependent isocitrate dehydrogenase activity. We also measured reactive oxygen species using the 2', 7'-Dichlorofluorescin Diacetate (DCFDA) assay. Finally we used thin layer chromatography to assess diacylglycerol (DAG) levels.

Results: We found that palmitate significantly impaired mitochondrial β-oxidation as well as citric acid cycle flux, but not Cpt1b activity. Palmitate negatively affected net aconitase activity and isocitrate dehydrogenase activity. The impaired enzyme activities were not due to oxidative stress but may be due to DAG mediated PKC activation.

Conclusion: This work demonstrates that palmitate, a highly abundant fatty acid in human diets, causes impaired β-oxidation and citric acid cycle flux in primary neonatal cardiomyocytes. This metabolic defect occurs prior to cell death suggesting that it is a cause, rather than a consequence of palmitate mediated lipotoxicity. This impaired mitochondrial metabolism can have important implications for metabolic diseases such as diabetes and obesity.

PubMed Disclaimer

LinkOut - more resources