Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Mar:410:283-96.
doi: 10.1113/jphysiol.1989.sp017533.

A Na+-activated K+ current in cultured brain stem neurones from chicks

Affiliations

A Na+-activated K+ current in cultured brain stem neurones from chicks

S E Dryer et al. J Physiol. 1989 Mar.

Abstract

1. Patch-clamp techniques were used to study the properties of a Na+-activated K+ current (IK(Na) in neurones cultured from embryonic chick brain stem. 2. With whole-cell clamp, a depolarizing voltage command evoked an inward current that was followed by an outward current with two components, the first transient, the second sustained. 3. Tetrodotoxin (TTX, 1 microM) eliminated the inward current and the transient component of the outward current, without affecting the sustained outward current. In addition, the transient outward current was attenuated when all external Na+ was replaced by Li+, suggesting that it was activated specifically by Na+ entry into the cell. 4. The time course of the transient outward current was obtained by subtracting records obtained in Li+ solution from those obtained in Na+ solution. There was significant overlap between the decay of the inward current and the onset of the transient outward current. 5. When just after the peak of the transient outward current, the membrane was stepped to progressively more hyperpolarized levels, the tail currents associated with the current reversed polarity near the calculated K+ equilibrium potential. 6. 4-Aminopyridine (4-AP, 4 mM) abolished the transient outward current and approximately half of the sustained late current. Tetraethylammonium (TEA, 2 mM) had no effect on the transient current, but reduced the sustained current slightly. 7. Inside-out patches, made in LiCl bathing solutions, contained channels that were activated by exposing the cytoplasmic face of the patch to Na+. Channel activity continued as long as Na+ was present. 8. The single-channel currents reversed at the K+ equilibrium potential, and were associated with a main conductance that depended upon K+ concentration (about 50 pS with [K+]o = 15 mM, [K+]i = 5 mM, and 100 pS when [K+]i was increased to 75 mM). 9. The open probability of the channels increased with increasing cytoplasmic Na+ concentration. At [Na+]i = 150 mM (the maximum concentration tested), channels were open almost continuously. Open probability was considerably less at 50 mM, and still measureable at 20 mM. 10. The magnitude of IK(Na) and its overlap with the inward Na+ current indicate that these channels contribute significantly to the repolarizing phase of the action potential. In addition, the relation between channel activity and Na+ concentration suggests that the channels may make a measurable contribution to membrane conductance at resting intracellular Na+ concentrations.

PubMed Disclaimer

References

    1. J Physiol. 1952 Apr;116(4):449-72 - PubMed
    1. Q Rev Biophys. 1974 Jul;7(3):401-34 - PubMed
    1. J Neurophysiol. 1988 Feb;59(2):450-67 - PubMed
    1. J Physiol. 1983 Mar;336:261-84 - PubMed
    1. Nature. 1984 May 24-30;309(5966):354-6 - PubMed

Publication types

LinkOut - more resources