Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Feb 8:5:185-203.
doi: 10.1146/annurev-animal-022516-022928. Epub 2016 Dec 5.

Impacts of Petroleum-Derived Pollutants on Fish Development

Affiliations
Review

Impacts of Petroleum-Derived Pollutants on Fish Development

Gary N Cherr et al. Annu Rev Anim Biosci. .

Abstract

The teleost fish embryo is particularly sensitive to petroleum hydrocarbons (polycyclic aromatic hydrocarbons, PAHs) at two distinct stages of development. The first is early during cleavage stages when PAHs alter normal signaling associated with establishment of the dorsal-ventral axis. This disruption involves the Wnt/β-catenin pathway and results in hyperdorsalized embryos that do not survive to hatching. The second, more sensitive period is during heart development, when oil and PAHs cause abnormal development of the heart as well as cardiac edema and arrhythmia. Even at extremely low levels (ng/L), PAHs cause subtle edema and altered contractility and heart rate, which impair swimming performance. Some PAHs are extremely phototoxic, such that exposures to trace concentrations result in severe membrane damage and mortality in sunlight. The developing fish embryo is a sensitive indicator of petroleum constituents in the environment, and healthy populations of fish likely require limited PAH exposure during development.

Keywords: cardiotoxicity; embryonic axis; fish embryo; oil; phototoxicity; polycyclic aromatic hydrocarbons.

PubMed Disclaimer

MeSH terms

LinkOut - more resources