Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Dec 14;16(12):7573-7579.
doi: 10.1021/acs.nanolett.6b03414. Epub 2016 Nov 14.

Superstrength through Nanotwinning

Affiliations

Superstrength through Nanotwinning

Qi An et al. Nano Lett. .

Abstract

The theoretical strength of a material is the minimum stress to deform or fracture the perfect single crystal material that has no defects. This theoretical strength is considered as an upper bound on the attainable strength for a real crystal. In contradiction to this expectation, we use quantum mechanics (QM) simulations to show that for the boron carbide (B4C) hard ceramic, this theoretical shear strength can be exceeded by 11% by imposing nanoscale twins. We also predict from QM that the indentation strength of nanotwinned B4C is 12% higher than that of the perfect crystal. Further, we validate this effect experimentally, showing that nanotwinned samples are harder by 2.3% than the twin-free counterpart of B4C. The origin of this strengthening mechanism is suppression of twin boundary (TB) slip within the nanotwins due to the directional nature of covalent bonds at the TB.

Keywords: DFT; Superhard ceramics; deformation mechanism; hardness; nanoindentation.

PubMed Disclaimer

Publication types

LinkOut - more resources