Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Dec:253:68-76.
doi: 10.1016/j.plantsci.2016.09.010. Epub 2016 Sep 24.

The arbuscular mycorrhizal fungus Rhizophagus irregularis differentially regulates the copper response of two maize cultivars differing in copper tolerance

Affiliations

The arbuscular mycorrhizal fungus Rhizophagus irregularis differentially regulates the copper response of two maize cultivars differing in copper tolerance

Miguel A Merlos et al. Plant Sci. 2016 Dec.

Abstract

Arbuscular mycorrhiza can increase plant tolerance to heavy metals. The effects of arbuscular mycorrhiza on plant metal tolerance vary depending on the fungal and plant species involved. Here, we report the effect of the arbuscular mycorrhizal fungus Rhizophagus irregularis on the physiological and biochemical responses to Cu of two maize genotypes differing in Cu tolerance, the Cu-sensitive cv. Orense and the Cu-tolerant cv. Oropesa. Development of the symbiosis confers an increased Cu tolerance to cv. Orense. Root and shoot Cu concentrations were lower in mycorrhizal than in non-mycorrhizal plants of both cultivars. Shoot lipid peroxidation increased with soil Cu content only in non-mycorrhizal plants of the Cu-sensitive cultivar. Root lipid peroxidation increased with soil Cu content, except in mycorrhizal plants grown at 250mg Cu kg-1soil. In shoots of mycorrhizal plants of both cultivars, superoxide dismutase, ascorbate peroxidase, catalase and glutathione reductase activities were not affected by soil Cu content. In Cu-supplemented soils, total phytochelatin content increased in shoots of mycorrhizal cv. Orense but decreased in cv. Oropesa. Overall, these data suggest that the increased Cu tolerance of mycorrhizal plants of cv. Orense could be due to an increased induction of shoot phytochelatin biosynthesis by the symbiosis in this cultivar.

Keywords: Arbuscular mycorrhiza; Copper; Maize; Oxidative stress; Phytochelatins.

PubMed Disclaimer

LinkOut - more resources