Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Dec 5:13:23.
doi: 10.1186/s12014-016-9124-y. eCollection 2016.

Cardiovascular proteomics in the era of big data: experimental and computational advances

Affiliations
Review

Cardiovascular proteomics in the era of big data: experimental and computational advances

Maggie P Y Lam et al. Clin Proteomics. .

Abstract

Proteomics plays an increasingly important role in our quest to understand cardiovascular biology. Fueled by analytical and computational advances in the past decade, proteomics applications can now go beyond merely inventorying protein species, and address sophisticated questions on cardiac physiology. The advent of massive mass spectrometry datasets has in turn led to increasing intersection between proteomics and big data science. Here we review new frontiers in technological developments and their applications to cardiovascular medicine. The impact of big data science on cardiovascular proteomics investigations and translation to medicine is highlighted.

Keywords: Cardiovascular medicine; Clinical proteomics; Mass spectrometry; Shotgun proteomics.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Trends in cardiovascular proteomics. Both (a) the volume of proteomics studies, and (b) the size of proteomics dataset have skyrocketed in the last decade. a The number of cardiovascular proteomics studies has increased approximately 400 % from 2004 to 2014, far outpacing the natural growth of the cardiovascular field, indicating increasingly common adoption of the technologies. b The protein coverage of proteomics experiments in the same time period has experienced considerable growth also, quantified as the numbers of identifiable cardiac proteins in an experiment. The maximum number of cardiac proteins (dashed lines) is based on estimated significantly expressed loci in the mouse heart and does not take into account proteoforms such as resulting from alternative splicing. This increase is driven by parallel advances in hardware instrumentation and computational technology. Coinciding with the notion of “complete proteomics”, proteomics studies can now interrogate more proteins of interest such as chromatin remodeling factors and transcription factors that express at low copy numbers. Effective means to analyze big proteomics dataset are becoming a new frontier of growth in cardiovascular proteomics
Fig. 2
Fig. 2
Analytical and computational overview in protein identification. 1 Cardiac samples are processed to extract the proteomes or subproteomes of interest, which may then be proteolyzed to obtain peptide digests. 2 The resulting peptides are desalted and subjected to LC–MS/MS analysis to acquire MS1 and MS2 spectra. 3 The peptide sequences that are present in the MS dataset can be identified using a database search approach, which uses a sequence database (e.g., UniProt) to generate theoretical peptide sequence and predict their fragmentation patterns in silico, then automatically find the best-match theoretical spectra to the experimental spectra for protein identification. Alternatively, the proteins can be identified using a spectral library search. The resulting protein datasets can be further analyzed to extract other biomedically meaningful information (see Fig. 4)
Fig. 3
Fig. 3
Common label-free quantification in proteomics studies. Two common label-free quantification approaches in use are based on spectral count (top) and ion intensity (bottom). Top: spectral counting methods leverage the fact that in stochastic shotgun profiling, the frequency of a protein being sampled by the instrument scales with its relative abundance in the sample. The numbers of spectra matched to an identical protein in healthy (green) versus diseased (red) samples can therefore be compared if appropriate normalization and bioinformatics workflows are implemented. Bottom: ion intensity methods integrate the total signal intensity of peptide ion signals in the mass spectrometer to infer protein quantity. Software is now available to automatically identify and quantify peptide ion signals from mass spectra
Fig. 4
Fig. 4
Proteomics data mining and functional annotations. Common computation approaches to extract information from massive proteomics datasets include (1) unsupervised cluster analysis, class discovery and visualization; (2) motif analysis and annotation term enrichment; (3) statistical learning methods for disease signature extraction; (4) network analysis; and (5) annotations with other functional information including protein motifs and cardiac disease relevance

Similar articles

Cited by

References

    1. Glatter T, Ludwig C, Ahrne E, Aebersold R, Heck AJ, Schmidt A. Large-scale quantitative assessment of different in-solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys-C/trypsin proteolysis over trypsin digestion. J Proteome Res. 2012;11(11):5145–5156. doi: 10.1021/pr300273g. - DOI - PubMed
    1. Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, Coon JJ. The one hour yeast proteome. Mol Cell Proteomics. 2014;13(1):339–347. doi: 10.1074/mcp.M113.034769. - DOI - PMC - PubMed
    1. Lindsey ML, Mayr M, Gomes AV, Delles C, Arrell DK, Murphy AM, Lange RA, Costello CE, Jin Y-F, Laskowitz DT, et al. Transformative impact of proteomics on cardiovascular health and disease: a scientific statement from the American Heart Association. Circulation. 2015;132(9):852–872. doi: 10.1161/CIR.0000000000000226. - DOI - PubMed
    1. Van Eyk JE. Overview: the maturing of proteomics in cardiovascular research. Circ Res. 2011;108(4):490–498. doi: 10.1161/CIRCRESAHA.110.226894. - DOI - PMC - PubMed
    1. McGregor E, Dunn MJ. Proteomics of the heart: unraveling disease. Circ Res. 2006;98(3):309–321. doi: 10.1161/01.RES.0000201280.20709.26. - DOI - PubMed