Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct 18;10(Suppl 7):85-89.
doi: 10.1186/s12919-016-0010-4. eCollection 2016.

Genetic complexity at expression quantitative trait loci

Affiliations

Genetic complexity at expression quantitative trait loci

Rita M Cantor et al. BMC Proc. .

Abstract

Background: Identifying variants that regulate gene expression and delineating their genetic architecture is a critical next step in our endeavors to better understand the genetic etiology of complex diseases. The appropriate genomic tools are in place, and preliminary analytic strategies have been developed.

Methods: Here we used Genetic Analysis Workshop (GAW) 19 data to investigate the genetic complexity of expression quantitative trait loci (eQTL), chromosomal regions likely to harbor regulatory elements responsible for gene expression. For this investigation, we analyzed the lymphocyte expression profiles of 653 individuals in 20 pedigrees who were also genotyped by single nucleotide polymorphism (SNP) arrays, followed by sequencing and imputation. We used these data to examine the degree of allelic heterogeneity, a contributor to genetic complexity at eQTL, by sequentially conditioning on the most significantly associated SNPs.

Result: SOLAR (Sequential Oligogenic Linkage Analysis Routines)-MGA (measured genotype approach) and FaST-LMM (Factored Spectrally Transformed Linear Mixed Model) software allowed us to analyze pedigree data. The power and Type 1 error rates for single SNP association testing and multiple SNP sequential association testing were consistent for these programs. Sequential conditioning of the real expression data revealed substantial levels of allelic heterogeneity at the 2 eQTL examined, illustrating this feature of genetic complexity.

Conclusions: eQTL exhibit substantial genetic complexity among and within pedigrees.

PubMed Disclaimer

References

    1. Blangero J, Teslovich TM, Sim X, Almeida MA, Jun G, Dyer TD, Johnson M, Peralta JM, Manning A, Wood AR, et al. Omics-squared: Human genomic, transcriptomic and phenotypic data for Genetic Analysis Workshop 19. BMC Proc. 2015;9(Suppl 8):S2. - PMC - PubMed
    1. Göring HH, Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA, Jowett JB, Abraham LJ, Rainwater DL, Comuzzie AG, et al. Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet. 2007;39(10):1208–1216. doi: 10.1038/ng2119. - DOI - PubMed
    1. Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 1998;62(5):1198–1211. doi: 10.1086/301844. - DOI - PMC - PubMed
    1. Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D. FaST linear mixed models for genome-wide association studies. Nat Methods. 2011;8(10):833–835. doi: 10.1038/nmeth.1681. - DOI - PubMed
    1. Listgarten J, Lippert C, Kadie CM, Davidson RI, Eskin E, Heckerman D. Improved linear mixed models for genome-wide association studies. Nat Methods. 2012;9(6):525–526. doi: 10.1038/nmeth.2037. - DOI - PMC - PubMed

LinkOut - more resources