Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 May 4;66(2):167-180.
doi: 10.33549/physiolres.933332. Epub 2016 Dec 16.

Pathophysiological mechanisms of calcineurin inhibitor-induced nephrotoxicity and arterial hypertension

Affiliations
Free article
Review

Pathophysiological mechanisms of calcineurin inhibitor-induced nephrotoxicity and arterial hypertension

L Hošková et al. Physiol Res. .
Free article

Abstract

Solid organ transplantation is an established treatment modality in patients with end-stage organ damage in cases where other therapeutic options fail. The long-term outcomes of solid organ transplant recipients have improved considerably since the introduction of the first calcineurin inhibitor (CNI) - cyclosporine. In 1984, the potent immunosuppressive properties of another CNI, tacrolimus, were discovered. The immunosuppressive effects of CNIs result from the inhibition of interleukin-2 synthesis and reduced proliferation of T cells due to calcineurin blockade. The considerable side effects that are associated with CNIs therapy include arterial hypertension and nephrotoxicity. The focus of this article was to review the available literature on the pathophysiological mechanisms of CNIs that induce chronic nephrotoxicity and arterial hypertension. CNIs lead to activation of the major vasoconstriction systems, such as the renin-angiotensin and endothelin systems, and increase sympathetic nerve activity. On the other hand, CNIs are known to inhibit NO synthesis and NO-mediated vasodilation and to increase free radical formation. Altogether, these processes cause endothelial dysfunction and contribute to the impairment of organ function. A better insight into the mechanisms underlying CNI nephrotoxicity could assist in developing more targeted therapies of arterial hypertension or preventing CNI nephrotoxicity in organ transplant recipients, including heart transplantation.

PubMed Disclaimer

MeSH terms

Substances