Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr;101(7):2865-2878.
doi: 10.1007/s00253-016-8041-3. Epub 2016 Dec 17.

Novel insights into biosynthesis and uptake of rhamnolipids and their precursors

Affiliations

Novel insights into biosynthesis and uptake of rhamnolipids and their precursors

Andreas Wittgens et al. Appl Microbiol Biotechnol. 2017 Apr.

Abstract

The human pathogenic bacterium Pseudomonas aeruginosa produces rhamnolipids, glycolipids with functions for bacterial motility, biofilm formation, and uptake of hydrophobic substrates. Rhamnolipids represent a chemically heterogeneous group of secondary metabolites composed of one or two rhamnose molecules linked to one or mostly two 3-hydroxyfatty acids of various chain lengths. The biosynthetic pathway involves rhamnosyltransferase I encoded by the rhlAB operon, which synthesizes 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) followed by their coupling to one rhamnose moiety. The resulting mono-rhamnolipids are converted to di-rhamnolipids in a third reaction catalyzed by the rhamnosyltransferase II RhlC. However, the mechanism behind the biosynthesis of rhamnolipids containing only a single fatty acid is still unknown. To understand the role of proteins involved in rhamnolipid biosynthesis the heterologous expression of rhl-genes in non-pathogenic Pseudomonas putida KT2440 strains was used in this study to circumvent the complex quorum sensing regulation in P. aeruginosa. Our results reveal that RhlA and RhlB are independently involved in rhamnolipid biosynthesis and not in the form of a RhlAB heterodimer complex as it has been previously postulated. Furthermore, we demonstrate that mono-rhamnolipids provided extracellularly as well as HAAs as their precursors are generally taken up into the cell and are subsequently converted to di-rhamnolipids by P. putida and the native host P. aeruginosa. Finally, our results throw light on the biosynthesis of rhamnolipids containing one fatty acid, which occurs by hydrolyzation of typical rhamnolipids containing two fatty acids, valuable for the production of designer rhamnolipids with desired physicochemical properties.

Keywords: Biosurfactant; Biosynthesis pathway; Pseudomonas aeruginosa; Pseudomonas putida; Rhamnolipids.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Chemical structures of rhamnolipids. Rhamnolipids are separated into mono- and di-rhamnolipids based on the number of L-rhamnose residues. Beside typical rhamnolipid species containing two 3-hydroxyfatty acids (mono-rhamno-di-lipid and di-rhamno-di-lipid), there exist species containing only one fatty acid chain (mono-rhamno-mono-lipid and di-rhamno-mono-lipid). Rhamnolipids from P. aeruginosa typically contain fatty acids with chain lengths between C8 and C14 (n = 1–7) while organisms from the genus Burkholderia produce rhamnolipids with longer alkyl chains and typical lengths between C12 and C16 (n = 5–9)
Fig. 2
Fig. 2
Rhamnolipids and HAAs produced by recombinant P. putida. a Thin layer chromatography (TLC) of extracts from single rhlA or rhlB expression shows no detectable amounts of rhamnolipids after 24 h (HPLC results not shown). b HPLC analysis of HAAs reveals their production in a rhlA expressing P. putida strain. c HPLC analysis of HAAs (squares) and mono-rhamnolipids (triangles) and TLC of P. putida cultures carrying rhlAB operon. Rhamnolipids are visible as brown bands on TLC plates as in the rhamnolipid-standard. Samples extracted from P. putida cultures show an additional violet spot descending from IPTG as in extracts of IPTG containing LB media (IPTG control). Samples were taken every 6 h for a period of 24 h from three independent cultures
Fig. 3
Fig. 3
Identification of the catalytic triade of RhlA. a The three-dimensional structure of RhlA from P. aeruginosa was modeled using the chloroperoxidase L (CpoL; PDB code: 1A88) from Streptomyces lividans as template. Despite low sequence identity (14%), the catalytic triad Ser, Asp, and His (indicated by an asterisk underneath the sequences) are strongly conserved among these two proteins. Sequences identical and similar were shaded in black and yellow, respectively. b Structural superimposition of CpoL (brown) and RhlA (blue) shows a high conservation of secondary structure elements. The catalytic triad of CpoL (Ser96, His255 and Asp226) and the putative catalytic triad of RhlA (Ser102, His251, and Asp223) are structurally strongly conserved. Dashed lines indicate catalytically important interactions of the active site residues
Fig. 4
Fig. 4
Production of mono-rhamnolipids by recombinant P. putida in HAA containing conditioned medium. P. putida strains expressing single rhlB (a) or the rhlA*B operon (b), containing inactive RhlA, were cultivated in HAA containing conditioned medium, obtained from a rhlA expressing P. putida strain. Extracts were analyzed via HPLC revealing HAAs (squares) and mono-rhamnolipids (triangles) and thin layer chromatography. Rhamnolipids are visible as brown bands on TLC plates as in the rhamnolipid-standard. Samples extracted from P. putida cultures show an additional violet spot descending from IPTG as in extracts of IPTG containing LB media (IPTG control). Samples were taken every 6 h for a period of 24 h from three independent cultures
Fig. 5
Fig. 5
Production of di-rhamnolipids by recombinant P. putida in mono-rhamnolipid containing conditioned medium. P. putida strains expressing single rhlC (a) or the PA1131-rhlC operon (b) were cultivated in mono-rhamnolipid containing conditioned medium, obtained from a rhlAB expressing P. putida strain. c For comparison, P. putida expressing the biosynthetic rhlABC operon cultivated in fresh LB media. Extracts were analyzed via HPLC revealing HAAs (squares), mono-rhamnolipids (triangles), and di-rhamnolipids (circles) and thin layer chromatography. Rhamnolipids are visible as brown bands on TLC plates as in the rhamnolipid-standard. Samples extracted from P. putida cultures show an additional violet spot descending from IPTG as in extracts of IPTG containing LB media (IPTG control). Samples were taken every 6 h for a period of 24 h from three independent cultures
Fig. 6
Fig. 6
Production of rhamnolipids by P. aeruginosa rhl-mutant strains. Thin layer chromatography was performed to analyze rhamnolipid biosynthesis by P. aeruginosa ΔrhlA and P. aeruginosa ΔrhlC cultivated in PPGAS medium. In addition, P. aeruginosa ΔrhlA was cultivated in mono-rhamnolipid containing conditioned medium, obtained from a P. aeruginosa ΔrhlC culture. Samples were taken after 24 h. Rhamnolipids are visible as brown bands on TLC plates as in the rhamnolipid-standard

References

    1. Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir. 2001;17:1367–1371. doi: 10.1021/la0011735. - DOI
    1. Abdel-Mawgoud AM, Lépine F, Déziel E. Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol. 2010;86:1323–1336. doi: 10.1007/s00253-010-2498-2. - DOI - PMC - PubMed
    1. Acosta EJ, Yuan JS, Bhakta AS. The characteristic curvature of ionic surfactants. J Surfactant Deterg. 2008;11:145–158. doi: 10.1007/s11743-008-1065-7. - DOI
    1. Alexeyev MF, Shokolenko IN, Croughan TP. Improved antibiotic-resistance gene cassettes and omega elements for Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene. 1995;160:63–67. doi: 10.1016/0378-1119(95)00108-I. - DOI - PubMed
    1. Alhede M, Bjarnsholt T, Jensen PØ, Phipps RK, Moser C, Christophersen L, Christensen LD, van Gennip M, Parsek M, Høiby N, Rasmussen TB, Givskov M. Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology. 2009;155:3500–3508. doi: 10.1099/mic.0.031443-0. - DOI - PubMed

LinkOut - more resources