The viability of hearing protection device fit-testing at navy and marine corps accession points
- PMID: 27991461
- PMCID: PMC5227010
- DOI: 10.4103/1463-1741.195806
The viability of hearing protection device fit-testing at navy and marine corps accession points
Abstract
Introduction: The viability of hearing protection device (HPD) verification (i.e., fit-testing) on a large scale was investigated to address this gap in a military accession environment.
Materials and methods: Personal Attenuation Ratings (PARs) following self-fitted (SELF-Fit) HPDs were acquired from 320 US Marine Corps training recruits (87.5% male, 12.5% female) across four test protocols (1-, 3-, 5-, and 7- frequency). SELF-Fit failures received follow-up to assess potential causes. Follow-up PARs were acquired (Experimenter fit [EXP-Fit], followed by Subject re-fit [SUB Re-Fit]). EXP-Fit was intended to provide a perception (dubbed "ear canal muscle memory") of what a correctly fitted HPD should feel like. SUB Re-Fit was completed following EXP-Fit to determine whether a training recruit could duplicate EXP-Fit on her/his own without assistance.
Results: A one-way analysis of variance (ANOVA) (N = 320) showed that SELF-Fit means differed significantly between protocols (P < 0.001). Post-hoc analyses showed that the 1-freq SELF-Fit mean was significantly lower than all other protocols (P < 0.03) by 5.6 dB or more. No difference was found between the multi-frequency protocols. For recruits who were followed up with EXP-Fit (n = 79), across all protocols, a significant (P < 0.001) mean improvement of 25.68 dB (10.99) was found, but PARs did not differ (P = 0.99) between EXP-Fit protocols. For recruits in the 3-freq and 5-freq protocol groups who experienced all three PAR test methods (n = 33), PAR methods differed (P < 0.001) but no method by protocol interaction was found (P = 0.46). Post hoc tests showed that both EXP-Fit and SUB Re-Fit had significantly better attenuation than SELF-Fit (P < 0.001), but no difference was found between EXPFit and SUB Re-Fit (P = 0.59). For SELF-Fit, the 1-freq protocol resulted in a 35% pass rate, whereas the 3-, 5-, and 7-freq protocols resulted in >60% pass rates. Results showed that once recruits experienced how HPDs should feel when inserted correctly, they were able to properly replicate the procedure with similar results to the expert fit suggesting "ear canal muscle memory" may be a viable training strategy concomitant with HPD verification. Fit-test duration was also measured to examine the tradeoff between results accuracy and time required to complete each protocol.
Discussion: Results from this study showed the critical importance of initial selection and fitting of HPDs followed by verification (i.e., fit-testing) at Navy and Marine Corps accession points. Achieving adequate protection from an HPD is fundamentally dependent on obtaining proper fit of the issued HPD as well as the quality of training recruits receive regarding HPD use.
Conflict of interest statement
Dr. Jeremy Federman is a military service member (or employee of the U.S. Government). This work was prepared as part of Dr. Jeremy Federman official duties. Title 17 U.S.C. §105 provides that ‘Copyright protection under this title is not available for any work of the United States Government.’ Title 17 U.S.C. §101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of that person's official duties.
Figures
References
-
- NIOSH. Noise and hearing loss prevention. 2013. [Last accessed on 2015 March 26]. Available from: http://www.cdc.gov/niosh/topics/noise/
-
- Helfer TM, Canham-Chervak M, Canada S, Mitchener TA. Epidemiology of hearing impairment and noise-induced hearing injury among U.S. military personnel, 2003–2005. Am J Prev Med. 2010;38:S71–7. - PubMed
-
- Trost RP, Shaw GB. Statistical analysis of hearing loss among navy personnel. Mil Med. 2007;172:426–30. - PubMed
-
- American Hearing Research Foundation. Noise induced hearing loss. 2012. [Last accessed on 2015 April 16]. Available from: http://american-hearingorg/disorders/noise-induced-hearing-loss/#affect .
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous