Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb;6(4).
doi: 10.1002/adhm.201600869. Epub 2016 Dec 20.

Encapsulation of Insulin-Secreting Cells Expressing a Genetically Encoded Fluorescent Calcium Indicator for Cell-Based Sensing In Vivo

Affiliations

Encapsulation of Insulin-Secreting Cells Expressing a Genetically Encoded Fluorescent Calcium Indicator for Cell-Based Sensing In Vivo

Christophe Boss et al. Adv Healthc Mater. 2017 Feb.

Abstract

The development of cell-based biosensors that give insight into cell and tissue function in vivo is an attractive technology for biomedical research. Here, the development of a cell line expressing a fluorescent calcium sensor for the study of beta-cell function in vivo is reported. The bioresponsive cell model is based on INS-1E pancreatic beta-cells, stably expressing the genetically encoded cameleon-based fluorescent sensor YC3.6cyto . Following single-cell selection and expansion, functional testing and in vitro encapsulation experiments are used to identify a suitable clone of INS-1E cells expressing the calcium sensor. This clone is transplanted subcutaneous in mouse using a cell macroencapsulation system based on flat sheet porous membranes. Cells in the implanted capsules are able to respond to glucose in vivo by secreting insulin and thereby contributing to the regulation of glycaemia in the mice. Furthermore, fluorescence imaging of explanted devices shows that encapsulated cells maintain high level expression of YC3.6cyto in vivo. In conclusion, these data show that encapsulated INS-1E cells stably expressing a genetically encoded calcium sensor can be successfully implanted in vivo, and therefore serve as biosensing element or in vivo model to longitudinally monitor the function of pancreatic beta-cells.

Keywords: cell encapsulation; cell-based biosensor; genetically encoded calcium indicator; in vivo fluorescence imaging; pancreatic beta-cells.

PubMed Disclaimer

LinkOut - more resources