Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 May;37(5):518-529.
doi: 10.1002/jat.3428. Epub 2016 Dec 20.

Current sights for mechanisms of deoxynivalenol-induced hepatotoxicity and prospective views for future scientific research: A mini review

Affiliations
Review

Current sights for mechanisms of deoxynivalenol-induced hepatotoxicity and prospective views for future scientific research: A mini review

Zhao Peng et al. J Appl Toxicol. 2017 May.

Abstract

Deoxynivalenol (DON) belongs to the group B trichothecenes, which are the most common mycotoxins in cereal commodities. It is very stable within the temperature range 170-350 °C, showing no reduction in its concentration after 30 min at 170 °C. This chemical property is a very dangerous factor for human and animal health. Liver is also responsible for the detoxification and formation of DON-glucuronide in both human and animals. Some studies already demonstrated that DON could induce liver damage remarkably through DON altering expressions of p53, caspase-3, caspase-7, caspase-8 and Bax in different cell lines. At the same time, other publications illustrated some opposite results. At present, a full and systematic discussion of the hepatic toxicity of DON is still lacking. Therefore, the aim of the present review is to summarize and update the prominent evidence, regarding DON effects on liver tissues and cell lines. Moreover, based on the current studies we outline some of the identified molecule targets or pathways involved in DON-induced hepatotoxicity, and put forward our opinions and suggest an hypothesis for future research. Copyright © 2016 John Wiley & Sons, Ltd.

Keywords: DON; apoptosis; hepatic toxicity; liver damage; molecule pathways.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources