Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan 10;56(1):149-159.
doi: 10.1021/acs.biochem.6b00660. Epub 2016 Dec 20.

Chaperone-like Activity of Calnuc Prevents Amyloid Aggregation

Affiliations

Chaperone-like Activity of Calnuc Prevents Amyloid Aggregation

Madhavi Kanuru et al. Biochemistry. .

Abstract

Calnuc is a ubiquitously expressed protein of the EF-hand Ca2+-binding superfamily. Previous studies have implicated it in Ca2+-sensitive physiological processes, whereas details of its function and involvement in human diseases are lacking. Drawing upon the sequence homology of calnuc with calreticulin, we propose it functions as a molecular chaperone-like protein. In cells under thermal, chemical [urea and guanidinium chloride (GdmCl)], and acidic stress, calnuc exhibits properties similar to those of established chaperone-like proteins (GRP78, spectrin, and α-crystallin), effectively demonstrated by its ability to suppress aggregation of malate dehydrogenase (MDH), alcohol dehydrogenase, and catalase. Calnuc aids in refolding of MDH with retention of 80% of its enzymatic activity. In HEK293 cells subjected to heat shock, calnuc chaperones luciferase, protecting its activity. Our in vitro and cell culture results establish the ability of calnuc to inhibit fibrillation of insulin and lysozyme and validate its neuroprotective role in cells treated with amyloid fibrils. Calnuc also rescues cells from fibrillar toxicity (caused by misfolded or aggregated proteins), providing a plausible explanation for the previous observation of its low level of expression in brains affected by Alzheimer's disease. We propose that calnuc is possibly involved in controlling protein unfolding diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), prion disease, and type II diabetes.

PubMed Disclaimer

MeSH terms

LinkOut - more resources