Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan 19;56(4):1069-1072.
doi: 10.1002/anie.201610679. Epub 2016 Dec 21.

C-H and C-N Activation at Redox-Active Pyridine Complexes of Iron

Affiliations

C-H and C-N Activation at Redox-Active Pyridine Complexes of Iron

K Cory MacLeod et al. Angew Chem Int Ed Engl. .

Abstract

Pyridine activation by inexpensive iron catalysts has great utility, but the steps through which iron species can break the strong (105-111 kcal mol-1 ) C-H bonds of pyridine substrates are unknown. In this work, we report the rapid room-temperature cleavage of C-H bonds in pyridine, 4-tert-butylpyridine, and 2-phenylpyridine by an iron(I) species, to give well-characterized iron(II) products. In addition, 4-dimethylaminopyridine (DMAP) undergoes room-temperature C-N bond cleavage, which forms a dimethylamidoiron(II) complex and a pyridyl-bridged tetrairon(II) square. These facile bond-cleaving reactions are proposed to occur through intermediates having a two-electron reduced pyridine that bridges two iron centers. Thus, the redox non-innocence of the pyridine can play a key role in enabling high regioselectivity for difficult reactions.

Keywords: bond cleavage; iron; pyridine; redox-activity.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The molecular structures of 1 (left) and 2 (right), with thermal ellipsoids shown at 50% probability. H atoms (except for the hydride) and the ortho-methyl groups on the supporting ligands are omitted for clarity.
Figure 2
Figure 2
The molecular structure of 4, with thermal ellipsoids shown at 50% probability. Only one of two independent molecules in the asymmetric unit is shown. The hydrogen atoms have been omitted for clarity.
Figure 3
Figure 3
The molecular structure of 6, with thermal ellipsoids shown at 50% probability. One of the two possible orientations is shown for the bridging pyridinyl ligands. Hydrogen atoms and 2,6-Me2C6H3 groups omitted for clarity.
Scheme 1
Scheme 1
C-H activation of tert-butylpyridine, and functionalization of the hydride product.
Scheme 2
Scheme 2
C-H activation of 2-phenylpyridine.
Scheme 3
Scheme 3
C-N activation in DMAP.
Scheme 4
Scheme 4
Proposed mechanism for C-H and C-N activation.

Similar articles

Cited by

References

    1. Comins DL, O’Connor S, Al-awar RS. In: Comprehensive Heterocyclic Chemistry III. Taylor AR, Katritzky CA, Ramsden EFV, Scriven RJK, editors. Oxford: Elsevier; 2008. pp. 41–99.
    1. Bull JA, Mousseau JJ, Pelletier G, Charette AB. Chem. Rev. 2012;112:2642–2713. - PubMed
    1. Sadimenko AP. In: Adv. Heterocycl. Chem. Alan RK, editor. Vol. 88. Academic Press; 2005. pp. 111–174.
    2. Cuesta L, Urriolabeitia EP. Comments Inorg. Chem. 2012;33:55–85.
    3. Zhu G, Tanski JM, Churchill DG, Janak KE, Parkin G. J. Am. Chem. Soc. 2002;124:13658–13659. - PubMed
    4. Bradley CA, Lobkovsky E, Chirik PJ. J. Am. Chem. Soc. 2003;125:8110–8111. - PubMed
    5. Ozerov OV, Pink M, Watson LA, Caulton KG. J. Am. Chem. Soc. 2004;126:2105–2113. - PubMed
    6. Arndt S, Elvidge BR, Zeimentz PM, Spaniol TP, Okuda J. Organometallics. 2006;25:793–795.
    7. Lewis JC, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2007;129:5332–5333. - PMC - PubMed
    8. Esteruelas MA, Forcén E, Oliván M, Oñate E. Organometallics. 2008;27:6188–6192.
    9. Oishi M, Kato T, Nakagawa M, Suzuki H. Organometallics. 2008;27:6046–6049.
    10. Berman AM, Lewis JC, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2008;130:14926–14927. - PMC - PubMed
    11. Carver CT, Diaconescu PL. Journal of Alloys and Compounds. 2009;488:518–523.
    12. Andino JG, Kilgore UJ, Pink M, Ozarowski A, Krzystek J, Telser J, Baik M-H, Mindiola DJ. Chem. Sci. 2010;1:351–356.
    13. Tobisu M, Hyodo I, Chatani N. J. Am. Chem. Soc. 2009;131:12070–12071. - PubMed
    14. Kuppuswamy S, Ghiviriga I, Abboud KA, Veige AS. Organometallics. 2010;29:6711–6722.
    15. Ye M, Gao G-L, Yu J-Q. J. Am. Chem. Soc. 2011;133:6964–6967. - PubMed
    16. Nakao Y. Synthesis. 2011;2011:3209–3219.
    17. Ren S, Xie Z. Organometallics. 2011;30:5953–5959.
    18. Wicker BF, Fan H, Hickey AK, Crestani MG, Scott J, Pink M, Mindiola DJ. J. Am. Chem. Soc. 2012;134:20081–20096. - PubMed
    19. Johnson DG, Lynam JM, Mistry NS, Slattery JM, Thatcher RJ, Whitwood AC. J. Am. Chem. Soc. 2013;135:2222–2234. - PubMed
    20. Han W, Jin F, Zhao Q, Du H, Yao L. Synlett. 2016;27:1854–1859.
    1. Norinder J, Matsumoto A, Yoshikai N, Nakamura E. J. Am. Chem. Soc. 2008;130:5858–5859. - PubMed
    2. Yoshikai N, Asako S, Yamakawa T, Ilies L, Nakamura E. Chem. Asian J. 2011;6:3059–3065. - PubMed
    3. Ilies L, Kobayashi M, Matsumoto A, Yoshikai N, Nakamura E. Adv. Synth. Catal. 2012;354:593–596.
    4. Sun C-L, Li B-J, Shi Z-J. Chem. Rev. 2011;111:1293–1314. - PubMed
    5. Bauer I, Knölker H-J. Chem. Rev. 2015;115:3170–3387. - PubMed
    6. Tran LD, Daugulis O. Org. Lett. 2010;12:4277–4279. - PMC - PubMed
    7. Liu S, Hu X, Li X, Cheng J. Syn. Lett. 2013;24:847–850.
    1. Chisholm MH, Huffman JC, Rothwell IP, Bradley PG, Kress N, Woodruff WH. J. Am. Chem. Soc. 1981;103:4945–4947.
    2. Fedushkin IL, Petrovskaya TV, Girgsdies F, Kohn RD, Bochkarev MN, Schumann H. Angew. Chem. 1999;111:2407–2409. Angew. Chem., Int. Ed.1999, 38, 2262–2264. - PubMed
    3. Prabusankar G, Molard Y, Cordier S, Golhen S, Le Gal Y, Perrin C, Ouahab L, Kahlal S, Halet JF. Eur. J. Inorg. Chem. 2009:2153–2161.
    4. Scarborough CC, Wieghardt K. Inorg. Chem. 2011;50:9773–9793. - PubMed
    5. Sieh D, Kubiak CP. Chem. Eur. J. 2016;22:10638–10650. - PubMed

Publication types

LinkOut - more resources