Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan 6;82(1):57-75.
doi: 10.1021/acs.joc.6b02053. Epub 2016 Dec 22.

Diastereoselective Synthesis of Highly Substituted Tetrahydrofurans by Pd-Catalyzed Tandem Oxidative Cyclization-Redox Relay Reactions Controlled by Intramolecular Hydrogen Bonding

Affiliations

Diastereoselective Synthesis of Highly Substituted Tetrahydrofurans by Pd-Catalyzed Tandem Oxidative Cyclization-Redox Relay Reactions Controlled by Intramolecular Hydrogen Bonding

Joshua L Brooks et al. J Org Chem. .

Abstract

Palladium-catalyzed oxidative cyclization of alkenols provides a convenient entry into cyclic ethers but typically proceeds with little or no diastereoselectivity for cyclization of trisubstituted olefins to form tetrahydrofurans due to the similar energies of competing 5-membered transition-state conformations. Herein, a new variant of this reaction has been developed in which a PdCl2/1,4-benzoquinone catalyst system coupled with introduction of a hydrogen-bond acceptor in the substrate enhances both diastereoselectivity and reactivity. Cyclization occurs with 5-exo Markovnikov regioselectivity. Mechanistic and computational studies support an anti-oxypalladation pathway in which intramolecular hydrogen bonding increases the nucleophilicity of the alcohol and enforces conformational constraints that enhance diastereoselectivity. The cyclization is followed by a tandem redox-relay process that provides versatile side-chain functionalities for further derivatization.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Natural products containing 1,1,4-trisubstituted tetrahydrofuran motifs.
Figure 2
Figure 2
Models of diastereocontrol in intramolecular oxypalladations of alkenols to form 1,1,4-trisubstituted tetrahydrofurans.
Figure 3
Figure 3
Deuterium-labeling experiment to probe mechanism of side-chain carbonyl formation.
Figure 4
Figure 4
Deuterium-labeling experiments to differentiate between syn- and anti-oxypalladation mechanisms.
Figure 5
Figure 5
Proposed models for organization of anti-oxypalladation transition state by intramolecular hydrogen bonding (pathway A) or Pd chelation (pathway B) by the distal (noncyclizing) alcohol followed by tandem redox-relay reaction to generate an aldehyde side-chain functionality.
Figure 6
Figure 6
Stereodifferentiating transition structures 25a and 25b for the cyclization of 4a (Ln = Cl2(BQ)) with bond distances in Å.

References

    1. Reviewed in:

    2. Boivin T. L. B. Tetrahedron 1987, 43, 3309–3362. 10.1016/S0040-4020(01)81626-4. - DOI
    3. Cardillo G.; Orena M. Tetrahedron 1990, 46, 3321–3408. 10.1016/S0040-4020(01)81510-6. - DOI
    1. For selected examples, see:

    2. Bowden B. F.; Coll J. C.; Mitchell S. J.; Mulder J.; Stokie G. J. Aust. J. Chem. 1978, 31, 2049–2056. 10.1071/CH9782049. - DOI
    3. Kamel H. N.; Fronczek F. R.; Khalifa S. I.; Slattery M. Chem. Pharm. Bull. 2007, 55, 537–540. 10.1248/cpb.55.537. - DOI - PubMed
    4. Sato A.; Fenical W.; Qi-tai Z.; Clardy J. Tetrahedron 1985, 41, 4303–4308. 10.1016/S0040-4020(01)97201-1. - DOI
    5. Shoji N.; Umeyama A.; Arihara S. J. Nat. Prod. 1993, 56, 1651–1653. 10.1021/np50099a035. - DOI
    6. Sheu J.-H.; Ahmed A. F.; Shiue R.-T.; Dai C.-F.; Kuo Y.-H. J. Nat. Prod. 2002, 65, 1904–1908. 10.1021/np020280r. - DOI - PubMed
    7. Ahmed A. F.; Shiue R.-T.; Wang G.-H.; Dai C.-F.; Kuo Y.-H.; Sheu J.-H. Tetrahedron 2003, 59, 7337–7344. 10.1016/S0040-4020(03)01138-4. - DOI
    8. Rudi A.; Shmul G.; Benayahu Y.; Kashman Y. Tetrahedron Lett. 2006, 47, 2937–2939. 10.1016/j.tetlet.2006.02.118. - DOI
    9. Kamel H. N.; Ferreira D.; Garcia-Fernandez L. F.; Slattery M. J. Nat. Prod. 2007, 70, 1223–1227. 10.1021/np070074p. - DOI - PubMed
    10. Takaki H.; Koganemaru R.; Iwakawa Y.; Higuchi R.; Miyamoto T. Biol. Pharm. Bull. 2003, 26, 380–382. 10.1248/bpb.26.380. - DOI - PubMed
    1. For selected examples, see:

    2. Patil A. D.; Freyer A. J.; Bean M. F.; Carte B. K.; Westley J. W.; Johnson R. K. Tetrahedron 1996, 52, 377–394. 10.1016/0040-4020(95)00856-X. - DOI
    3. Caffieri F.; Fattorusso E.; Taglialatela-Scafati O.; Ianaro A. Tetrahedron 1999, 55, 7045–7056. 10.1016/S0040-4020(99)00332-4. - DOI
    4. Caffieri F.; Fattorusso E.; Taglialatela-Scafati O.; Di Rosa M.; Ianaro A. Tetrahedron 1999, 55, 13831–13840. 10.1016/S0040-4020(99)00866-2. - DOI
    5. Gochfeld D. J.; Hamann M. T. J. Nat. Prod. 2001, 64, 1477–1479. 10.1021/np010216u. - DOI - PubMed
    6. Campagnuolo C.; Fattorusso E.; Taglialatela-Scafati O.; Ianaro A.; Pisano B. Eur. J. Org. Chem. 2002, 2002, 61–69. 10.1002/1099-0690(20021)2002:1<61::AID-EJOC61>3.0.CO;2-E. - DOI - PubMed
    1. Sakemi S.; Higa T.; Jefford C. W.; Bernardinelli G. Tetrahedron Lett. 1986, 27, 4287–4290. 10.1016/S0040-4039(00)94254-0. - DOI
    1. Vera B.; Rodríguez A. D.; Avilés E.; Ishikawa Y. Eur. J. Org. Chem. 2009, 2009, 5327–5336. 10.1002/ejoc.200900775. - DOI - PMC - PubMed

Publication types