Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Nov 2;9(6):465-471.
doi: 10.1080/21541248.2016.1258444. Epub 2016 Dec 22.

Small GTPases controlling autophagy-related membrane traffic in yeast and metazoans

Affiliations
Review

Small GTPases controlling autophagy-related membrane traffic in yeast and metazoans

Szabolcs Takáts et al. Small GTPases. .

Abstract

During macroautophagy, the phagophore-mediated formation of autophagosomes and their subsequent fusion with lysosomes requires extensive transformation of the endomembrane system. Membrane dynamics in eukaryotic cells is regulated by small GTPase proteins including Arfs and Rabs. The small GTPase proteins that regulate autophagic membrane traffic are mostly conserved in yeast and metazoans, but there are also several differences. In this mini-review, we compare the small GTPase network of yeast and metazoan cells that regulates autophagy, and point out the similarities and differences in these organisms.

Keywords: Arf; Rab; Rag; TORC1; autolysosome; autophagosome; autophagy; membrane fusion; membrane trafficking.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Small GTPases integrate autophagy into the membrane trafficking network. Key trafficking routes related to autophagy and their regulatory small GTPases in mammalian cells are depicted in this figure. Regulation of autophagy can be divided into 4 main steps. (1) Induction of autophagy. Autophagy is suppressed by TORC1, which is activated by Rheb during its transient recruitment to lysosomes by Rags. TORC1 activity is also regulated by Arl8 dependent lysosomal positioning. (2) Autophagosome formation. The Sar1 and Rab1 dependent early secretory and Rab11 dependent endosomal recycling pathways contribute to the delivery of membrane and Atg proteins to the PAS. (3) Autophagosome-lysosome fusion. The fusion of autophagosomes with late endosomes and lysosomes requires Rab7. The Rab21 dependent relocalization of Vamp7/8 from endosomes to lysosomes is also necessary for efficient fusion. (4) Autolysosomal degradation. The degradative capacity of autolysosomes depends on Rab5- and possibly Rab24-dependent biosynthetic transport. AL: Autolysosome, AP: Autophagosome, EE: Early endosome, GO: Golgi, LE/L: Late endosome/Lysosome, PH: Phagophore, RE: Recycling endosome, SG: Secretory granule.

Similar articles

  • Small GTPase proteins in macroautophagy.
    Yang S, Rosenwald A. Yang S, et al. Small GTPases. 2018 Sep 3;9(5):409-414. doi: 10.1080/21541248.2016.1246280. Epub 2016 Nov 1. Small GTPases. 2018. PMID: 27763811 Free PMC article. Review.
  • Ypt/Rab GTPases: principles learned from yeast.
    Lipatova Z, Hain AU, Nazarko VY, Segev N. Lipatova Z, et al. Crit Rev Biochem Mol Biol. 2015;50(3):203-11. doi: 10.3109/10409238.2015.1014023. Epub 2015 Feb 23. Crit Rev Biochem Mol Biol. 2015. PMID: 25702751 Free PMC article. Review.
  • Role of Rab GTPases in membrane traffic.
    Olkkonen VM, Stenmark H. Olkkonen VM, et al. Int Rev Cytol. 1997;176:1-85. doi: 10.1016/s0074-7696(08)61608-3. Int Rev Cytol. 1997. PMID: 9394917 Review.
  • Autophagy and proteins involved in vesicular trafficking.
    Amaya C, Fader CM, Colombo MI. Amaya C, et al. FEBS Lett. 2015 Nov 14;589(22):3343-53. doi: 10.1016/j.febslet.2015.09.021. Epub 2015 Oct 9. FEBS Lett. 2015. PMID: 26450776 Review.
  • Membrane Trafficking in Autophagy.
    Søreng K, Neufeld TP, Simonsen A. Søreng K, et al. Int Rev Cell Mol Biol. 2018;336:1-92. doi: 10.1016/bs.ircmb.2017.07.001. Epub 2017 Sep 21. Int Rev Cell Mol Biol. 2018. PMID: 29413888 Review.

Cited by

References

    1. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008; 451:1069-75; PMID:18305538; http://dx.doi.org/10.1038/nature06639 - DOI - PMC - PubMed
    1. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320:1496-501; PMID:18497260; http://dx.doi.org/10.1126/science.1157535 - DOI - PMC - PubMed
    1. Kira S, Tabata K, Shirahama-Noda K, Nozoe A, Yoshimori T, Noda T. Reciprocal conversion of Gtr1 and Gtr2 nucleotide-binding states by Npr2-Npr3 inactivates TORC1 and induces autophagy. Autophagy 2014; 10:1565-78; PMID:25046117; http://dx.doi.org/10.4161/auto.29397 - DOI - PMC - PubMed
    1. Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 2008; 10:935-45; PMID:18604198; http://dx.doi.org/10.1038/ncb1753 - DOI - PMC - PubMed
    1. Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 2010; 22:132-9; PMID:20056399; http://dx.doi.org/10.1016/j.ceb.2009.12.004 - DOI - PubMed

Publication types

Substances

LinkOut - more resources