Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2016 Dec 22;35(1):101.
doi: 10.1186/s40880-016-0164-5.

Phase I/II trial evaluating concurrent carbon-ion radiotherapy plus chemotherapy for salvage treatment of locally recurrent nasopharyngeal carcinoma

Affiliations
Clinical Trial

Phase I/II trial evaluating concurrent carbon-ion radiotherapy plus chemotherapy for salvage treatment of locally recurrent nasopharyngeal carcinoma

Lin Kong et al. Chin J Cancer. .

Abstract

Background: After definitive chemoradiotherapy for non-metastatic nasopharyngeal carcinoma (NPC), more than 10% of patients will experience a local recurrence. Salvage treatments present significant challenges for locally recurrent NPC. Surgery, stereotactic ablative body radiotherapy, and brachytherapy have been used to treat locally recurrent NPC. However, only patients with small-volume tumors can benefit from these treatments. Re-irradiation with X-ray-based intensity-modulated radiotherapy (IMXT) has been more widely used for salvage treatment of locally recurrent NPC with a large tumor burden, but over-irradiation to the surrounding normal tissues has been shown to cause frequent and severe toxicities. Furthermore, locally recurrent NPC represents a clinical entity that is more radio-resistant than its primary counterpart. Due to the inherent physical advantages of heavy-particle therapy, precise dose delivery to the target volume(s), without exposing the surrounding organs at risk to extra doses, is highly feasible with carbon-ion radiotherapy (CIRT). In addition, CIRT is a high linear energy transfer (LET) radiation and provides an increased relative biological effectiveness compared with photon and proton radiotherapy. Our prior work showed that CIRT alone to 57.5 GyE (gray equivalent), at 2.5 GyE per daily fraction, was well tolerated in patients who were previously treated for NPC with a definitive dose of IMXT. The short-term response rates at 3-6 months were also acceptable. However, no patients were treated with concurrent chemotherapy. Whether the addition of concurrent chemotherapy to CIRT can benefit locally recurrent NPC patients over CIRT alone has never been addressed. It is possible that the benefits of high-LET CIRT may make radiosensitizing chemotherapy unnecessary. We therefore implemented a phase I/II clinical trial to address these questions and present our methodology and results.

Methods and design: The maximal tolerated dose (MTD) of re-treatment using raster-scanning CIRT plus concurrent cisplatin will be determined in the phase I, dose-escalating stage of this study. CIRT dose escalation from 52.5 to 65 GyE (2.5 GyE × 21-26 fractions) will be delivered, with the primary endpoints being acute and subacute toxicities. Efficacy in terms of overall survival (OS) and local progression-free survival of patients after concurrent chemotherapy plus CIRT at the determined MTD will then be studied in the phase II stage of the trial. We hypothesize that CIRT plus chemotherapy can improve the 2-year OS rate from the historical 50% to at least 70%.

Conclusions: Re-treatment of locally recurrent NPC using photon radiation techniques, including IMXT, provides moderate efficacy but causes potentially severe toxicities. Improved outcomes in terms of efficacy and toxicity profile are expected with CIRT plus chemotherapy. However, the MTD of CIRT used concurrently with cisplatin-based chemotherapy for locally recurrent NPC remains to be determined. In addition, whether the addition of chemotherapy to CIRT is needed remains unknown. These questions will be evaluated in the dose-escalating phase I and randomized phase II trials.

Keywords: Carbon ion radiotherapy; Chemotherapy; Re-irradiation; Recurrent nasopharyngeal cancer; Salvage therapy.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Typical treatment plan and dose distribution for intensity-modulated carbon-ion radiotherapy delivered using the raster-scanning technique in a patient with stage rT3N0M0 nasopharyngeal carcinoma with recurrence at the base of the skull. Transverse, sagittal, and coronal views are provided. The red, orange, yellow, and blue shaded areas represent 95%, 85%, 70%, and 30% isodose lines; the red, green, and yellow lines represent gross tumor volume (GTV), GTV + 3 mm, and clinical target volume (CTV), respectively

Similar articles

Cited by

References

    1. Wei KR, Zheng RS, Zhang SW, Liang ZH, Ou ZX, Chen WQ. Nasopharyngeal carcinoma incidence and mortality in China in 2010. Chin J Cancer. 2014;33(8):381–387. - PMC - PubMed
    1. Wei WI, Chan JY, Ng RW, Ho WK. Surgical salvage of persistent or recurrent nasopharyngeal carcinoma with maxillary swing approach—critical appraisal after 2 decades. Head Neck. 2011;33(7):969–975. doi: 10.1002/hed.21558. - DOI - PubMed
    1. Chua DT, Wei WI, Sham JS, Hung KN, Au GK. Stereotactic radiosurgery versus gold grain implantation in salvaging local failures of nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2007;69(2):469–474. doi: 10.1016/j.ijrobp.2007.03.012. - DOI - PubMed
    1. Leung TW, Tung SY, Sze WK, Sze WM, Wong VY, Sai-Ki VO. Salvage brachytherapy for patients with locally persistent nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2000;47(2):405–412. doi: 10.1016/S0360-3016(00)00463-6. - DOI - PubMed
    1. Hua YJ, Han F, Lu LX, Mai HQ, Guo X, Hong MH, et al. Long-term treatment outcome of recurrent nasopharyngeal carcinoma treated with salvage intensity modulated radiotherapy. Eur J Cancer. 2012;48(18):3422–3428. doi: 10.1016/j.ejca.2012.06.016. - DOI - PubMed

Publication types