The GpsB files: the truth is out there
- PMID: 28010044
- DOI: 10.1111/mmi.13612
The GpsB files: the truth is out there
Abstract
Peptidoglycan (PG), an essential stress-bearing component of the bacterial cell wall, is synthesised by penicillin binding proteins (PBPs). PG synthesis at the cell division septum is necessary for constructing new poles of progeny cells, and cells cannot elongate without inserting new PG in the side-wall. The cell division regulator GpsB appears to co-ordinate PG synthesis at the septum during division and at the side-wall during elongation in rod-shaped and ovococcoid Gram-positive bacteria. How the control over PG synthesis is exerted is unknown. In this issue of Molecular Microbiology, Rued et al. show that in pneumococci GpsB forms complexes with PBP2a and PBP2b, and that deletion or depletion of GpsB prevents closure of the septal ring that in itself is PBP2x-dependent. Loss of GpsB can be suppressed by spontaneous mutations, including within the gene encoding the only PP2C Ser/Thr phosphatase in Streptococcus pneumoniae, indicating that GpsB plays a key - but unknown - role in protein phosphorylation in pneumococci. Rued et al. combine phenotypic and genotypic analyses of mutant strains that suggest discrepancies in the literature concerning GpsB might have arisen from accumulation of unidentified suppressors, highlighting the importance and power of strain validation and whole genome sequencing in this context.
© 2016 John Wiley & Sons Ltd.
Comment on
-
Suppression and synthetic-lethal genetic relationships of ΔgpsB mutations indicate that GpsB mediates protein phosphorylation and penicillin-binding protein interactions in Streptococcus pneumoniae D39.Mol Microbiol. 2017 Mar;103(6):931-957. doi: 10.1111/mmi.13613. Epub 2017 Feb 7. Mol Microbiol. 2017. PMID: 28010038 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
