Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar:119:78-85.
doi: 10.1016/j.biomaterials.2016.12.011. Epub 2016 Dec 14.

Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication

Affiliations

Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication

Benjamin M Geilich et al. Biomaterials. 2017 Mar.

Abstract

The rising prevalence and severity of antibiotic-resistant biofilm infections poses an alarming threat to public health worldwide. Here, biocompatible multi-compartment nanocarriers were synthesized to contain both hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) and the hydrophilic antibiotic methicillin for the treatment of medical device-associated infections. SPION co-encapsulation was found to confer unique properties, enhancing both nanocarrier relaxivity and magneticity compared to individual SPIONs. These iron oxide-encapsulating polymersomes (IOPs) penetrated 20 μm thick Staphylococcus epidermidis biofilms with high efficiency following the application of an external magnetic field. Three-dimensional laser scanning confocal microscopy revealed differential bacteria death as a function of drug and SPION loading. Complete eradication of all bacteria throughout the biofilm thickness was achieved using an optimized IOP formulation containing 40 μg/mL SPION and 20 μg/mL of methicillin. Importantly, this formulation was selectively toxic towards methicillin-resistant biofilm cells but not towards mammalian cells. These novel iron oxide-encapsulating polymersomes demonstrate that it is possible to overcome antibiotic-resistant biofilms by controlling the positioning of nanocarriers containing two or more therapeutics.

Keywords: Antibiotic-resistance; Biofilm; Nanomedicine; Polymersome; SPION; Staphylococcus epidermidis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms