Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Feb 22:667:84-91.
doi: 10.1016/j.neulet.2016.12.044. Epub 2016 Dec 20.

Pathophysiology of status epilepticus

Affiliations
Review

Pathophysiology of status epilepticus

Matthew C Walker. Neurosci Lett. .

Abstract

Status epilepticus (SE) is the maximal expression of epilepsy with a high morbidity and mortality. It occurs due to the failure of mechanisms that terminate seizures. Both human and animal data indicate that the longer a seizure lasts, the less likely it is to stop. Recent evidence suggests that there is a critical transition from an ictal to a post-ictal state, associated with a transition from a spatio-temporally desynchronized state to a highly synchronized state, respectively. As SE continues, it becomes progressively resistant to drugs, in particular benzodiazepines due partly to NMDA receptor-dependent internalization of GABA(A) receptors. Moreover, excessive calcium entry into neurons through excessive NMDA receptor activation results in activation of nitric oxide synthase, calpains, and NADPH oxidase. The latter enzyme plays a critical part in the generation of seizure-dependent reactive oxygen species. Calcium also accumulates in mitochondria resulting in mitochondrial failure (decreased ATP production), and opening of the mitochondrial permeability transition pore. Together these changes result in status epilepticus-dependent neuronal death via several pathways. Multiple downstream mechanisms including inflammation, break down of the blood-brain barrier, and changes in gene expression can contribute to later pathological processes including chronic epilepsy and cognitive decline.

Keywords: Drug resistance; Excitotoxicity; Mitochondria; Reactive oxygen species; Status epilepticus.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources