Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan 5;100(1):31-39.
doi: 10.1016/j.ajhg.2016.11.015. Epub 2016 Dec 22.

Mixed Model Association with Family-Biased Case-Control Ascertainment

Affiliations

Mixed Model Association with Family-Biased Case-Control Ascertainment

Tristan J Hayeck et al. Am J Hum Genet. .

Abstract

Mixed models have become the tool of choice for genetic association studies; however, standard mixed model methods may be poorly calibrated or underpowered under family sampling bias and/or case-control ascertainment. Previously, we introduced a liability threshold-based mixed model association statistic (LTMLM) to address case-control ascertainment in unrelated samples. Here, we consider family-biased case-control ascertainment, where case and control subjects are ascertained non-randomly with respect to family relatedness. Previous work has shown that this type of ascertainment can severely bias heritability estimates; we show here that it also impacts mixed model association statistics. We introduce a family-based association statistic (LT-Fam) that is robust to this problem. Similar to LTMLM, LT-Fam is computed from posterior mean liabilities (PML) under a liability threshold model; however, LT-Fam uses published narrow-sense heritability estimates to avoid the problem of biased heritability estimation, enabling correct calibration. In simulations with family-biased case-control ascertainment, LT-Fam was correctly calibrated (average χ2 = 1.00-1.02 for null SNPs), whereas the Armitage trend test (ATT), standard mixed model association (MLM), and case-control retrospective association test (CARAT) were mis-calibrated (e.g., average χ2 = 0.50-1.22 for MLM, 0.89-2.65 for CARAT). LT-Fam also attained higher power than other methods in some settings. In 1,259 type 2 diabetes-affected case subjects and 5,765 control subjects from the CARe cohort, downsampled to induce family-biased ascertainment, LT-Fam was correctly calibrated whereas ATT, MLM, and CARAT were again mis-calibrated. Our results highlight the importance of modeling family sampling bias in case-control datasets with related samples.

PubMed Disclaimer

References

    1. Kang H.M., Sul J.H., Service S.K., Zaitlen N.A., Kong S.Y., Freimer N.B., Sabatti C., Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 2010;42:348–354. - PMC - PubMed
    1. Zhou X., Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012;44:821–824. - PMC - PubMed
    1. Yang J., Zaitlen N.A., Goddard M.E., Visscher P.M., Price A.L. Advantages and pitfalls in the application of mixed-model association methods. Nat. Genet. 2014;46:100–106. - PMC - PubMed
    1. Loh P.-R., Tucker G., Bulik-Sullivan B.K., Vilhjálmsson B.J., Finucane H.K., Salem R.M., Chasman D.I., Ridker P.M., Neale B.M., Berger B. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 2015;47:284–290. - PMC - PubMed
    1. Hayeck T.J., Zaitlen N.A., Loh P.-R., Vilhjalmsson B., Pollack S., Gusev A., Yang J., Chen G.-B., Goddard M.E., Visscher P.M. Mixed model with correction for case-control ascertainment increases association power. Am. J. Hum. Genet. 2015;96:720–730. - PMC - PubMed