Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan 23;35(4):557-563.
doi: 10.1016/j.vaccine.2016.12.022. Epub 2016 Dec 22.

Viral vector vaccines protect cockatiels from inflammatory lesions after heterologous parrot bornavirus 2 challenge infection

Affiliations

Viral vector vaccines protect cockatiels from inflammatory lesions after heterologous parrot bornavirus 2 challenge infection

Solveig Runge et al. Vaccine. .

Abstract

Avian bornaviruses are causative agents of proventricular dilatation disease (PDD), a chronic neurologic and often fatal disorder of psittacines including endangered species. To date no causative therapy or immunoprophylaxis is available. Our previous work has shown that viral vector vaccines can delay the course of homologous bornavirus challenge infections but failed to protect against PDD when persistent infection was not prevented. The goal of this study was to refine our avian bornavirus vaccination and infection model to better represent natural bornavirus infections in order to achieve full protection against a heterologous challenge infection. We observed that parrot bornavirus 2 (PaBV-2) readily infected cockatiels (Nymphicus hollandicus) by combined intramuscular and subcutaneous injection with as little as 102.7foci-forming units (ffu) per bird, whereas a 500-fold higher dose of the same virus administered via peroral and oculonasal route did not result in persistent infection. These results indicated that experimental bornavirus challenge infections with this virus should be performed via the parenteral route. Prime-boost vaccination of cockatiels with Newcastle disease virus (NDV) and modified vaccinia virus Ankara (MVA) vectors expressing the nucleoprotein and phosphoprotein genes of PaBV-4 substantially blocked bornavirus replication following parenteral challenge infection with 103.5ffu of heterologous PaBV-2. Only two out of six vaccinated birds had very low viral levels detectable in a few organs. As a consequence, only one vaccinated bird developed mild PDD-associated microscopic lesions, while mock-vaccinated controls were not protected against PaBV-2 infection and inflammation. Our results demonstrate that NDV and MVA vector vaccines can protect against invasive heterologous bornavirus challenge infections and subsequent PDD. These vector vaccines represent a promising tool to combat avian bornaviruses in psittacine populations.

Keywords: Avian bornaviruses; Modified vaccinia virus Ankara (MVA); Newcastle disease virus (NDV); Parrot bornavirus 2 (PaBV-2); Parrot bornavirus 4 (PaBV-4); Recombinant viral vector vaccines.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources