Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Dec 12:4:133.
doi: 10.3389/fped.2016.00133. eCollection 2016.

Regional Differences in End-Diastolic Volumes between 3D Echo and CMR in HLHS Patients

Affiliations

Regional Differences in End-Diastolic Volumes between 3D Echo and CMR in HLHS Patients

Alberto Gomez et al. Front Pediatr. .

Abstract

Ultrasound is commonly thought to underestimate ventricular volumes compared to magnetic resonance imaging (MRI), although the reason for this and the spatial distribution of the volume difference is not well understood. In this paper, we use landmark-based image registration to spatially align MRI and ultrasound images from patients with hypoplastic left heart syndrome and carry out a qualitative and quantitative spatial comparison of manual segmentations of the ventricular volume obtained from the respective modalities. In our experiments, we have found a trend showing volumes estimated from ultrasound to be smaller than those obtained from MRI (by approximately up to 20 ml), and that important contributors to this difference are the presence of artifacts such as shadows in the echo images and the different criteria to include or exclude image features as part of the ventricular volume.

Keywords: cardiac magnetic resonance; image registration; ultrasound imaging; ventricular function; volume estimation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Selecting corresponding landmarks in echo and CMR images. (A) Long axis slice. (B) RVOT view. (C) Short-axis view with arbitrary rotation. (D) Short-axis view parallel to the diaphragm. (E) Valve-plane landmarks. (F) Valve and apex landmarks. (G) CMR landmarks. (H) CMR landmarks.
Figure 2
Figure 2
Alignment results. The figure shows a 2D short-axis slice of the aligned volumes for 5 patients. The CMR image is shown in the background in grayscale and the echo image is overlaid on top using a red-to-yellow colormap. A selection of movies showing the achieved alignment and its consistency over time are included in Supplementary Material. (A) Pat 1. (B) Pat 2. (C) Pat 3. (D) Pat 4. (E) Pat 5.
Figure 3
Figure 3
Segment division on the RV. Representation of the RV and its main axes (A). Example of segment division for patient 2 from echo (B) and CMR (C). Bulls-eye plot representation of the proposed 14-segment systemic RV division (D). Annotations indicate left (L), right (R), inferior (I), and anterior (A).
Figure 4
Figure 4
Regional volume difference relative to the global CMR-derived volume, in percentage. (A) Pat 1. (B) Pat 2. (C) Pat 3. (D) Pat 4. (E) Pat 5.
Figure 5
Figure 5
Average regional volume difference relative to the global (CMR)-derived volume between the regional CMR derived volume and the echo-derived volume, in percentage. The error bars indicate ± SD.
Figure 6
Figure 6
Qualitative results. Visual comparison of the echo-derived segmentation and the CMR-derived segmentation superimposed on the aligned echo image (top row) and on the aligned CMR image (bottom row).

Similar articles

Cited by

References

    1. Grothues F, Smith GC, Moon JC, Bellenger NG, Collins P, Klein HU, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol (2002) 90(1):29–34.10.1016/S0002-9149(02)02381-0 - DOI - PubMed
    1. Kjaergaard J, Petersen CL, Kjaer A, Schaadt BK, Oh JK, Hassager C. Evaluation of right ventricular volume and function by 2D and 3D echocardiography compared to MRI. Eur J Echocardiogr (2006) 7(6):430–8.10.1016/j.euje.2005.10.009 - DOI - PubMed
    1. Greupner J, Zimmermann E, Grohmann A, Dübel H-P, Althoff T, Borges AC, et al. Head-to-head comparison of left ventricular function assessment with 64-row computed tomography. J Am Coll Cardiol (2012) 59(21):1897–907.10.1016/j.jacc.2012.01.046 - DOI - PubMed
    1. Bell A, Rawlins D, Bellsham-Revell H, Miller O, Razavi R, Simpson J. Assessment of right ventricular volumes in hypoplastic left heart syndrome by real-time three-dimensional echocardiography: comparison with cardiac magnetic resonance imaging. Eur Heart J Cardiovasc Imaging (2014) 15(3):257–66.10.1093/ehjci/jet145 - DOI - PubMed
    1. Simpson J, Lopez L, Acar P, Friedberg M, Khoo N, Ko H, et al. Three-dimensional echocardiography in congenital heart disease: an expert consensus document from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr (2016) 17(10):S0894–7317. - PubMed