Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May;13(4):1377-1387.
doi: 10.1016/j.nano.2016.12.014. Epub 2016 Dec 28.

Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA

Affiliations

Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA

Jayesh A Kulkarni et al. Nanomedicine. 2017 May.

Abstract

Lipid nanoparticles (LNPs) containing distearoylphosphatidlycholine (DSPC), and ionizable amino-lipids such as dilinoleylmethyl-4-dimethylaminobutyrate (DLin-MC3-DMA) are potent siRNA delivery vehicles in vivo. Here we explore the utility of similar LNP systems as transfection reagents for plasmid DNA (pDNA). It is shown that replacement of DSPC by unsaturated PCs and DLin-MC3-DMA by the related lipid DLin-KC2-DMA resulted in highly potent transfection reagents for HeLa cells in vitro. Further, these formulations exhibited excellent transfection properties in a variety of mammalian cell lines and transfection efficiencies approaching 90% in primary cell cultures. These transfection levels were equal or greater than achieved by Lipofectamine, with much reduced toxicity. Finally, microinjection of LNP-eGFP into the limb bud of a chick embryo resulted in robust reporter-gene expression. It is concluded that LNP systems containing ionizable amino lipids can be highly effective, non-toxic pDNA delivery systems for gene expression both in vitro and in vivo.

Keywords: Gene delivery; Gene expression; Lipid nanoparticles; Nanomedicine; Plasmid.

PubMed Disclaimer

Grants and funding

LinkOut - more resources