In vitro assessment of the glucose-lowering effects of berberrubine-9-O-β-D-glucuronide, an active metabolite of berberrubine
- PMID: 28042874
- PMCID: PMC5342660
- DOI: 10.1038/aps.2016.120
In vitro assessment of the glucose-lowering effects of berberrubine-9-O-β-D-glucuronide, an active metabolite of berberrubine
Abstract
Berberrubine (BRB) is the primary metabolite of berberine (BBR) that has shown a stronger glucose-lowering effect than BBR in vivo. On the other hand, BRB is quickly and extensively metabolized into berberrubine-9-O-β-D-glucuronide (BRBG) in rats after oral administration. In this study we compared the pharmacokinetic properties of BRB and BRBG in rats, and explored the mechanisms underlying their glucose-lowering activities. C57BL/6 mice with HFD-induced hyperglycemia were administered BRB (50 mg·kg-1·d-1, ig) for 6 weeks, which caused greater reduction in the plasma glucose levels than those caused by BBR (120 mg·kg-1·d-1) or BRB (25 mg·kg-1·d-1). In addition, BRB dose-dependently decreased the activity of α-glucosidase in gut of the mice. After oral administration of BRB in rats, the exposures of BRBG in plasma at 3 different dosages (10, 40, 80 mg/kg) and in urine at different time intervals (0-4, 4-10, 10-24 h) were dramatically greater than those of BRB. In order to determine the effectiveness of BRBG in reducing glucose levels, we prepared BRBG from the urine pool of rats, and identified and confirmed it through LC-MS-IT-TOF and NMR spectra. In human normal liver cell line L-O2 in vitro, treatment with BRB or BRBG (5, 20, 50 μmol/L) increased glucose consumption, enhanced glycogenesis, stimulated the uptake of the glucose analog 2-NBDG, and modulated the mRNA levels of glucose-6-phosphatase and hexokinase. However, both BBR and BRB improved 2-NBDG uptake in insulin-resistant L-O2 cells, while BRBG has no effect. In conclusion, BRB exerts a stronger glucose-lowering effect than BBR in HFD-induced hyperglycemia mice. Although BRB significantly stimulated the insulin sensitivity and glycolysis in vitro, BRBG may have a greater contribution to the glucose-lowering effect because it has much greater system exposure than BRB after oral administration of BRB. The results suggest that BRBG is a potential agent for reducing glucose levels.
Figures







References
-
- Wang D, Liu Z, Guo M, Liu S. Structural elucidation and identification of alkaloids in Rhizoma Coptidis by electrospray ionization tandem mass spectrometry. J Mass Spectrom 2004; 39: 1356–65. - PubMed
-
- Holy EW, Akhmedov A, Luscher TF, Tanner FC. Berberine, a natural lipid-lowering drug, exerts prothrombotic effects on vascular cells. J Mol Cell Cardiol 2009; 46: 234–40. - PubMed
-
- Pan GY, Wang GJ, Sun JG, Huang ZJ, Zhao XC, Gu Y, et al. Inhibitory action of berberine on glucose absorption. Acta Pharm Sin 2003; 38: 911–4. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical