The PI3K/mTOR dual inhibitor BEZ235 suppresses proliferation and migration and reverses multidrug resistance in acute myeloid leukemia
- PMID: 28042875
- PMCID: PMC5342661
- DOI: 10.1038/aps.2016.121
The PI3K/mTOR dual inhibitor BEZ235 suppresses proliferation and migration and reverses multidrug resistance in acute myeloid leukemia
Abstract
Aberrant activation of the PI3K/Akt/mTOR pathway contributes to the proliferation of malignant cells, and may confer resistance to chemotherapy in various malignancies, including acute myeloid leukemia (AML). Chemoresistance is the major reason for relapse in AML. RAD001 (everolimus) has been used at d1 and d7 of an induction chemotherapy regimen for AML, which has acceptable toxicity and may improve conventional chemotherapeutic treatment. Dual inhibitors of PI3K and mTOR overcome some of the intrinsic disadvantages of rapamycin and its derivatives. In this study, we evaluated the effects of BEZ235, a PI3K/mTOR dual inhibitor, on the multidrug-resistant AML cell lines HL-60/VCR and K562/ADR in vitro. BEZ235 dose-dependently inhibited the viability of HL-60/VCR and K562/ADR cells with the IC50 values of 66.69 and 71.44 nmol/L, respectively. BEZ235 (25-100 nmol/L) dose-dependently inhibited the migration of the two AML cell lines, and it also significantly sensitized the two AML cell lines to VCR and ADR. After treatment with BEZ235, the miR-1-3p levels were markedly increased in HL-60/VCR cells. Using TargetScan analysis and luciferase assays, we showed that miR-1-3p targeted BAG4, EDN1 and ABCB1, the key regulators of cell apoptosis, migration and multidrug resistance, and significantly decreased their levels in the two AML cell lines. Transfection of HL-60/VCR and K562/ADR cells with miR-1-3p-AMO to inhibit miR-1-3p could reverse the anti-proliferation effects of BEZ235. In conclusion, the PI3K/mTOR dual inhibitor BEZ235 effectively chemosensitizes AML cells via increasing miR-1-3p and subsequently down-regulating BAG4, EDN1 and ABCB1.
Figures
References
-
- Khaled SA, Malki M, Marcucci G. Acute myeloid leukemia: biologic, prognostic, and therapeutic insights. Oncology (Williston Park) 2016; 30: 318–29. - PubMed
-
- Greaves M. Leukaemia 'firsts' in cancer research and treatment. Nat Rev Cancer 2016; 16: 163–72. - PubMed
-
- Feldman EJ. Novel therapeutics for therapy-related acute myeloid leukemia: 2014. Clin Lymphoma Myeloma Leuk 2015; 15: S91–3. - PubMed
-
- Brotelle T, Bay JO. PI3K-AKT-mTOR pathway: Description, therapeutic development, resistance, predictive/prognostic biomarkers and therapeutic applications for cancer. Bull Cancer 2016; 103: 18–29. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous
