Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate
- PMID: 28051175
- PMCID: PMC5209699
- DOI: 10.1038/srep39814
Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates.
Figures







Similar articles
-
Controllable fabrication of polymeric nanowires by NIL technique and self-assembled AAO template for SERS application.Sci Rep. 2021 Jul 22;11(1):14929. doi: 10.1038/s41598-021-94513-w. Sci Rep. 2021. PMID: 34294829 Free PMC article.
-
Rapid Fabrication of a Flexible and Transparent Ag Nanocubes@PDMS Film as a SERS Substrate with High Performance.ACS Appl Mater Interfaces. 2020 Aug 19;12(33):37538-37548. doi: 10.1021/acsami.0c07178. Epub 2020 Aug 6. ACS Appl Mater Interfaces. 2020. PMID: 32701289
-
Large-scale flexible metal-covered polymer nanopillar arrays as highly uniform and reproducible SERS substrates for trace analysis.Nanotechnology. 2018 Nov 16;29(46):465701. doi: 10.1088/1361-6528/aadd60. Epub 2018 Aug 29. Nanotechnology. 2018. PMID: 30156187
-
UV-nanoimprint lithography: structure, materials and fabrication of flexible molds.J Nanosci Nanotechnol. 2013 May;13(5):3145-72. doi: 10.1166/jnn.2013.7437. J Nanosci Nanotechnol. 2013. PMID: 23858828 Review.
-
Template-Assisted Fabrication of Nanostructured Arrays for Sensing Applications.Chempluschem. 2018 Aug;83(8):741-755. doi: 10.1002/cplu.201800127. Epub 2018 Jun 19. Chempluschem. 2018. PMID: 31950669 Review.
Cited by
-
In Situ Collection and Rapid Detection of Pathogenic Bacteria Using a Flexible SERS Platform Combined with a Portable Raman Spectrometer.Int J Mol Sci. 2022 Jul 1;23(13):7340. doi: 10.3390/ijms23137340. Int J Mol Sci. 2022. PMID: 35806345 Free PMC article.
-
Electrical Properties of Double-Sided Polymer Surface Nanostructures.Nanoscale Res Lett. 2019 Jul 11;14(1):230. doi: 10.1186/s11671-019-3071-2. Nanoscale Res Lett. 2019. PMID: 31297675 Free PMC article.
-
Rapid synthesis of a highly active and uniform 3-dimensional SERS substrate for on-spot sensing of dopamine.Mikrochim Acta. 2019 Mar 29;186(4):260. doi: 10.1007/s00604-019-3357-1. Mikrochim Acta. 2019. PMID: 30927088
-
Flexible sensor with electrophoretic polymerized graphene oxide/PEDOT:PSS composite for voltammetric determination of dopamine concentration.Sci Rep. 2021 Oct 26;11(1):21101. doi: 10.1038/s41598-021-00712-w. Sci Rep. 2021. PMID: 34702959 Free PMC article.
-
Flexible, high-performance and facile PVA/cellulose/Ag SERS chips for in-situ and rapid detection of thiram pesticide in apple juice.Heliyon. 2023 Sep 7;9(9):e19926. doi: 10.1016/j.heliyon.2023.e19926. eCollection 2023 Sep. Heliyon. 2023. PMID: 37809786 Free PMC article.
References
-
- Fleischmann M., Hendra P. J. & McQuillan A. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974).
-
- McNay G., Eustace D., Smith W. E., Faulds K. & Graham D. Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Appl. Spectrosc. 65, 825–837 (2011). - PubMed
-
- Sharma B., Frontiera R. R., Henry A. I., Ringe E. & Van Duyne R. P. SERS: materials, applications, and the future. Materials today 15, 16–25 (2012).
-
- Chen J. et al.. Multiple myeloma detection based on blood plasma surface-enhanced Raman spectroscopy using a portable Raman spectrometer. Laser Phys. Lett. 13, 105601 (2016).
-
- Zou Y. et al.. Urine surface-enhanced Raman spectroscopy for non-invasive diabetic detection based on a portable Raman spectrometer. Laser Phys. Lett. 13, 065604 (2016).
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous