Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb 14;8(7):10919-10930.
doi: 10.18632/oncotarget.14229.

Full preclinical validation of the 123I-labeled anti-PSMA antibody fragment ScFvD2B for prostate cancer imaging

Affiliations

Full preclinical validation of the 123I-labeled anti-PSMA antibody fragment ScFvD2B for prostate cancer imaging

Barbara Frigerio et al. Oncotarget. .

Abstract

Purpose: In the context of prostate cancer (PCa) imaging, the aim of this study was to optimize (in vitro) the specificity and assess preclinically (in vivo) the tumor targeting properties of the 123I-scFvD2B antibody specific for prostate-specific membrane antigen (PSMA).

Experimental design: The 123I-labeling conditions of the antibody fragment scFvD2B, produced in an eukaryotic system under GMP-compliant conditions, were optimized and assessed for purity and immunoreactivity. The specificity and potency of tumor uptake were tested in three preclinical in vivo models of subcutaneously xenografted human tumors expressing different levels of PSMA (LNCaP, naturally expressing PSMA; PC3-PIP and LS174T-PSMA, transfected with PSMA) or PC3 and LS174T, as negative controls, to assess the clearance, biodistribution and imaging potential of 123I-scFvD2B.

Results: The set conditions of production and radiolabeling yielded a reagent suitable for human delivery thanks to the purity of the formulation and the high immunoreactivity. In all preclinical models 123I-scFvD2B showed specific targeting only to PSMA-positive tumors with the final specific activity ranging up to 1500 MBq/mg. Despite different levels of PSMA expression, biodistribution analyses and SPECT/CT imaging demonstrated similar results and maximal signal-to-background ratios 24 hours after injection.

Conclusions: Due to its in vitro and in vivo properties, 123I-scFvD2B could be a promising tool for the early diagnosis of PCa, and may represent a molecular imaging option to monitor disease progression and assist in the clinical management of PCa patients.

Keywords: 123I-radiolabeled antibody; imaging; prostate cancer; prostate-specific membrane antigen; scFv antibody fragment.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest

The authors declare no conflicts of interest. The funding agencies had no role in study design and collection, analysis and interpretation of data, nor in writing this report or the decision to submit it for publication.

Figures

Figure 1
Figure 1
A. Flow cytometric analysis of scFvD2B. scFvD2B (solid line) binding on PSMA-positive cell lines (PC3-PIP, LNCaP and LS174T-PSMA) and PSMA-negative cell lines (PC3, A431, LS174T). The shift in fluorescence was assessed relatively to a negative control (gray histogram, cells incubated with biotinylated Protein L and streptavidin-PE). B. BIAcore analysis: scFvD2B obtained from prokaryotic system (Blue line) and from eukaryotic system (Green line) on PC3-PIP lisate; scFvD2B obtained from prokaryotic system (Red line) and from eukaryotic system (Purple line) on LNCaP lisate.
Figure 1
Figure 1
A. Flow cytometric analysis of scFvD2B. scFvD2B (solid line) binding on PSMA-positive cell lines (PC3-PIP, LNCaP and LS174T-PSMA) and PSMA-negative cell lines (PC3, A431, LS174T). The shift in fluorescence was assessed relatively to a negative control (gray histogram, cells incubated with biotinylated Protein L and streptavidin-PE). B. BIAcore analysis: scFvD2B obtained from prokaryotic system (Blue line) and from eukaryotic system (Green line) on PC3-PIP lisate; scFvD2B obtained from prokaryotic system (Red line) and from eukaryotic system (Purple line) on LNCaP lisate.
Figure 2
Figure 2. Clearance of
123I-scFvD2B in tumor-bearing mice. Blood (★), PSMA-positive tumor (PC3-PIP; ·) PSMA-negative tumor ( PC3;) at different time points after injection of 7.5 MBq (100 µg; specific activity [SA] = 75 MBq/mg) 123I-scFvD2B (mean of 2 experiments). Values are expressed as mean %ID/g ± SD; the number of animals ranged from 3 to 14.
Figure 3
Figure 3. Biodistribution and localization after intravenous administration of
123I-scFvD2B to athymic mice. Uptake and retention were measured in different organs as decay-adjusted percentage of the injected dose per gram of tissue (% ID/g). A. Biodistribution in non-tumor-bearing mice evaluated 24 hours post injection, 7.5 MBq (41 µg; SA = 181 MBq/mg) administered; error bars represent SD from the mean value of 4 mice. B. Biodistribution in LNCaP tumor bearing mice evaluated 24 hours post injection; 7.5 MBq (51 µg; SA = 145 MBq/mg) administered; error bars represent SD from the mean value of 2 mice. C. Biodistribution in PC3-PIP/PC3 tumor bearing mice evaluated at 3, 9, 15 and 24 hours post injection; 7.5 MBq (95 µg; SA = 78 MBq/mg) administered; error bars represent SD from the mean value of 3 to 6 mice.
Figure 4
Figure 4. Representative SPECT/CT images in LS174T-PSMA/LS174T model after intravenous administration of
123I-scFvD2B. PSMA-positive tumor LS174T-PSMA (right flank) and PSMA-negative tumor LS174T (left flank) evaluated at 3, 9 and 24 hours post injection. Left: 12 MBq (8 µg; SA = 1500 MBq/mg) administered. Right: 12 MBq administered plus a 100-fold excess of cold scFvD2B.

References

    1. Torre LA, Siegel RL, Ward EM, Jemal A. Global Cancer Incidence and Mortality Rates and Trends--An Update. Cancer Epidemiol Biomarkers Prev. 2016;25:16–27. - PubMed
    1. Nelson WG, De Marzo AM, Isaacs WB. Prostate cancer. N Engl J Med. 2003;349:366–381. - PubMed
    1. Wright GL, Jr, Grob BM, Haley C, Grossman K, Newhall K, Petrylak D, Troyer J, Konchuba A, Schellhammer PF, Moriarty R. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology. 1996;48:326–334. - PubMed
    1. Ghosh A, Heston WD. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem. 2004;91:528–539. - PubMed
    1. Horoszewicz JS, Kawinski E, Murphy GP. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 1987;7:927–935. - PubMed

Publication types

MeSH terms