Determination of the Mutant Selection Window and Evaluation of the Killing of Mycoplasma gallisepticum by Danofloxacin, Doxycycline, Tilmicosin, Tylvalosin and Valnemulin
- PMID: 28052123
- PMCID: PMC5215565
- DOI: 10.1371/journal.pone.0169134
Determination of the Mutant Selection Window and Evaluation of the Killing of Mycoplasma gallisepticum by Danofloxacin, Doxycycline, Tilmicosin, Tylvalosin and Valnemulin
Abstract
Mycoplasma gallisepticum is a common etiological cause of a chronic respiratory disease in chickens; its increasing antimicrobial resistance compromises the use of tetracyclines, macrolides and quinolones in the farm environment. Mutant selection window (MSW) determination was used to investigate the propensity for future resistance induction by danofloxacin, doxycycline, tilmicosin, tylvalosin and valnemulin. Killing of M. gallisepticum strain S6 by these antimicrobials was also studied by incubating M. gallisepticum into medium containing the compounds at the minimal concentration that inhibits colony formation by 99% (MIC99) and the mutant prevention concentration (MPC). Based on the morphology and colony numbers of M. gallisepticum on agar plates, the four kinds of sera in the order of the applicability for culturing M. gallisepticum were swine serum > horse serum > bovine serum > mixed serum. The MPC/MIC99 values for each agent were as follows: danofloxacin > tilmicosin > tylvalosin > doxycycline > valnemulin. MPC generated more rapid and greater magnitude killing than MIC99 against M. gallisepticum. Under exposure of 105-109 CFU/mL at MPC drug levels, valnemulin had the slowest rate of reduction in viable organisms and danofloxacin had the highest rate of reduction.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
References
-
- Firsov AA, Strukova EN, Shlykova DS, Portnoy YA, Kozyreva VK, Edelstein MV, et al. Bacterial resistance studies using in vitro dynamic models: the predictive power of the mutant prevention and minimum inhibitory antibiotic concentrations. Antimicrobial agents and chemotherapy. 2013;57(10):4956–62. 10.1128/AAC.00578-13 - DOI - PMC - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
