Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jan 5;10(1):8.
doi: 10.1186/s13045-016-0375-x.

Nuclear microRNAs in normal hemopoiesis and cancer

Affiliations
Review

Nuclear microRNAs in normal hemopoiesis and cancer

John E J Rasko et al. J Hematol Oncol. .

Abstract

Since the discovery of microRNAs (miRNAs) in the early 1990s, these small molecules have been increasingly recognized as key players in the regulation of critical biological processes. They have also been implicated in many diverse human diseases. The canonical function of miRNAs is to target the 3' untranslated region (3' UTR) of cytoplasmic messenger RNA to post-transcriptionally regulate mRNA and protein levels. It has now been shown that miRNAs can also bind to the promoter regions of genes or primary miRNA transcripts to regulate gene expression. Such observations have indicated the presence of miRNAs in the nucleus and implied additional non-canonical functions. Nevertheless, the role(s) of nuclear miRNAs in normal hemopoiesis and cancer remains elusive despite a burgeoning literature. Herein, we review current knowledge concerning the abundance and/or functions of nuclear miRNAs during blood cell development and cancer biology. We also discuss ongoing challenges in order to provoke further studies into identifying key roles for nuclear miRNAs in the development of other cell lineages and human cancers.

Keywords: Blood; Cancer; Gene regulation; Hemopoiesis; Nuclear localization; miRNAs.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Known roles of nuclear-localized miRNAs. a Regulation of gene expression by targeting gene promoters to activate or silence genes. b Targeting and suppressing long non-coding RNA (lncRNA) function. c Perturbation of miRNA biogenesis via binding to primary miRNA (pri-mRNA) transcripts. d Fine-tuning mRNA target expression through detention of miRNAs in the nucleus

References

    1. Naidu S, Magee P, Garofalo M. MiRNA-based therapeutic intervention of cancer. J Hematol Oncol. 2015;8:68. doi: 10.1186/s13045-015-0162-0. - DOI - PMC - PubMed
    1. Sanchez-Mejias A, Tay Y. Competing endogenous RNA networks: tying the essential knots for cancer biology and therapeutics. J Hematol Oncol. 2015;8:30. doi: 10.1186/s13045-015-0129-1. - DOI - PMC - PubMed
    1. Moyano M, Stefani G. piRNA involvement in genome stability and human cancer. J Hematol Oncol. 2015;8:38. doi: 10.1186/s13045-015-0133-5. - DOI - PMC - PubMed
    1. Tian X, Tian J, Tang X, Ma J, Wang S. Long non-coding RNAs in the regulation of myeloid cells. J Hematol Oncol. 2016;9:99. doi: 10.1186/s13045-016-0333-7. - DOI - PMC - PubMed
    1. Chen L-L. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016;17:205–211. doi: 10.1038/nrm.2015.32. - DOI - PubMed

Publication types

LinkOut - more resources