Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017;18(3):237-263.
doi: 10.2174/1389200218666170105165444.

Reduction of Doxorubicin-Induced Cardiotoxicity Using Nanocarriers: A Review

Affiliations
Review

Reduction of Doxorubicin-Induced Cardiotoxicity Using Nanocarriers: A Review

Michaela Fojtu et al. Curr Drug Metab. 2017.

Abstract

Background: Anthracycline antibiotic doxorubicin (DOX) is a very potent and extensively prescribed chemotherapeutic drug. It is widely utilized in the therapy of variety of haematological and solid tumours, although its administration is commonly accompanied with several severe side effects. The most serious one is a development of dose-dependent and cumulative cardiotoxicity. In the course of time, many strategies have been investigated in order to avoid or at least to diminish DOX-induced cardiac dysfunction; these include reduction of toxic effect by coadministration with iron chelators (dexrazoxane), trastuzumab, taxanes, statins, and ACE-inhibitors. However, the attenuation of cardiotoxic effect is still not satisfactory yet.

Objective: This review represents an overall appraisal of studies concerning with the utilization of various doxorubicinloaded nanoparticles in the cancer treatment with specific emphasis on those studies evaluating their influence on the reduction of heart tissue damage.

Conclusion: Introduction of nanoscale drug delivery systems undoubtedly represents nowadays one of the most promising tools for lowering systemic toxicity. Nanoparticles enable to target the therapeutic payload directly towards the tumor tissue, thus leading to the increased accumulation of the drug in the desired tissue and simultaneously protecting surrounding healthy tissues.

Keywords: Doxorubicin; cardiotoxicity; gold; liposomal; nanocarriers.; nanoparticles; polymeric; protein.

PubMed Disclaimer

MeSH terms

LinkOut - more resources