Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jul-Sep;16(3):241-55.

Baroreflex modulation of ultradian oscillations of blood pressure and heart rate in unanesthetized dogs

Affiliations
  • PMID: 2805943

Baroreflex modulation of ultradian oscillations of blood pressure and heart rate in unanesthetized dogs

T P Broten et al. Chronobiologia. 1989 Jul-Sep.

Abstract

Telemetered, free-running dogs were studied to determine the role of cardiovascular control systems in modulation of ultradian oscillations of arterial pressure (MAP) and heart rate (HR). Data, aquired (2 Hz) by a stable telemetry system, was stored on a digital computer and analyzed for its harmonic content by a Fast Fourier Transform (FFT) algorithm. Both AP and HR consistently demonstrated rhythms having a period of from 0.6 to 1.0 h. Modulation of these rhythms by arterial pressure control systems was assessed in dogs studied before and carotid sinus baroreceptor denervation, before and after denervation of the aortic arch baroreceptors and before and after a combination of both these procedures. The data indicate the power spectral density (PSD) of MAP, but not HR, is increased (p less than 0.05) after denervation of the carotid sinuses alone, while the primary frequency of the oscillations was unchanged. On the other hand, denervation of the aortic arch baroreceptors alone was without effect on either the frequency or PSD of these oscillations. A combination of both carotid sinus and aortic arch denervation resulted in an increased (p less than 0.05) PSD of MAP oscillations but not in their frequency. These data indicate that the carotid sinuses modulate rhythmic behavior of MAP by buffering the magnitude, but not frequency, of the oscillations. Moreover, since oscillations were present in dogs after denervation of both the carotid sinus and aortic arch baroreceptors, these ultradian oscillations are not a result of a non-linear negative feedback mechanisms arising from these pressure sensitive regions.

PubMed Disclaimer

Similar articles

Publication types