Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2017 Jan 6;12(1):e0169368.
doi: 10.1371/journal.pone.0169368. eCollection 2017.

Effectiveness of the 23-Valent Pneumococcal Polysaccharide Vaccine (PPV23) against Pneumococcal Disease in the Elderly: Systematic Review and Meta-Analysis

Affiliations
Meta-Analysis

Effectiveness of the 23-Valent Pneumococcal Polysaccharide Vaccine (PPV23) against Pneumococcal Disease in the Elderly: Systematic Review and Meta-Analysis

Gerhard Falkenhorst et al. PLoS One. .

Abstract

Background: Routine vaccination of elderly people against pneumococcal diseases is recommended in many countries. National guidelines differ, recommending either the 23-valent polysaccharide vaccine (PPV23), the 13-valent conjugate vaccine (PCV13) or both. Considering the ongoing debate on the effectiveness of PPV23, we performed a systematic literature review and meta-analysis of the vaccine efficacy/effectiveness (VE) of PPV23 against invasive pneumococcal disease (IPD) and pneumococcal pneumonia in adults aged ≥60 years living in industrialized countries.

Methods: We searched for pertinent clinical trials and observational studies in databases MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and Cochrane Database of Systematic Reviews. We assessed the risk of bias of individual studies using the Cochrane Risk of Bias tool for randomized controlled trials and the Newcastle-Ottawa Scale for observational studies. We rated the overall quality of the evidence by GRADE criteria. We performed meta-analyses of studies grouped by outcome and study design using random-effects models. We applied a sensitivity analysis excluding studies with high risk of bias.

Results: We identified 17 eligible studies. Pooled VE against IPD (by any serotype) was 73% (95%CI: 10-92%) in four clinical trials, 45% (95%CI: 15-65%) in three cohort studies, and 59% (95%CI: 35-74%) in three case-control studies. After excluding studies with high risk of bias, pooled VE against pneumococcal pneumonia (by any serotype) was 64% (95%CI: 35-80%) in two clinical trials and 48% (95%CI: 25-63%) in two cohort studies. Higher VE estimates in trials (follow-up ~2.5 years) than in observational studies (follow-up ~5 years) may indicate waning protection. Unlike previous meta-analyses, we excluded two trials with high risk of bias regarding the outcome pneumococcal pneumonia, because diagnosis was based on serologic methods with insufficient specificity.

Conclusions: Our meta-analysis revealed significant VE of PPV23 against both IPD and pneumococcal pneumonia by any serotype in the elderly, comparable to the efficacy of PCV13 against vaccine-serotype disease in a recent clinical trial in elderly people. Due to its broader serotype coverage and the decrease of PCV13 serotypes among adults resulting from routine infant immunization with PCV13, PPV23 continues to play an important role for protecting adults against IPD and pneumococcal pneumonia.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Flowchart of literature search.
Fig 2
Fig 2. Forest plots of meta-analyses of randomized controlled trials, outcomes IPD and pneumococcal pneumonia.
IPD = invasive pneumococcal disease PP = pneumococcal pneumonia RCT = randomized controlled trial.
Fig 3
Fig 3. Forest plots of meta-analyses of observational studies, outcome IPD.
IPD = invasive pneumococcal disease VT-IPD = vaccine-serotype IPD.
Fig 4
Fig 4. Forest plots of meta-analyses of observational studies, outcome pneumococcal pneumonia.
PP = pneumococcal pneumonia.

References

    1. Rozenbaum MH, Pechlivanoglou P, van der Werf TS, Lo-Ten-Foe JR, Postma MJ, Hak E. The role of Streptococcus pneumoniae in community-acquired pneumonia among adults in Europe: a meta-analysis. European journal of clinical microbiology & infectious diseases. 2013;32(3):305–16. - PubMed
    1. Klapdor B, Ewig S, Pletz MW, Rohde G, Schutte H, Schaberg T, et al. Community-acquired pneumonia in younger patients is an entity on its own. The European respiratory journal. 2012;39(5):1156–61. 10.1183/09031936.00110911 - DOI - PubMed
    1. Harboe ZB, Thomsen RW, Riis A, Valentiner-Branth P, Christensen JJ, Lambertsen L, et al. Pneumococcal serotypes and mortality following invasive pneumococcal disease: a population-based cohort study. PLoS Med. 2009;6(5):e1000081 10.1371/journal.pmed.1000081 - DOI - PMC - PubMed
    1. Fedson DS. Preventing non bacteremic pneumococcal pneumonia in older adults: historical background and considerations for choosing between PCV13 and PPV23. Hum Vaccin Immunother. 2014;10(5):1322–30. 10.4161/hv.28797 - DOI - PMC - PubMed
    1. Austrian R, Douglas RM, Schiffman G, Coetzee AM, Koornhof HJ, Hayden-Smith S, et al. Prevention of pneumococcal pneumonia by vaccination. Transactions of the Association of American Physicians. 1976;89:184–94. - PubMed

Substances