Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan 6;16(1):1.
doi: 10.1186/s12941-016-0177-6.

The occurrence of ESBL-producing Escherichia coli carrying aminoglycoside resistance genes in urinary tract infections in Saudi Arabia

Affiliations

The occurrence of ESBL-producing Escherichia coli carrying aminoglycoside resistance genes in urinary tract infections in Saudi Arabia

Essam J Alyamani et al. Ann Clin Microbiol Antimicrob. .

Abstract

Background: The infection and prevalence of extended-spectrum β-lactamases (ESBLs) is a worldwide problem, and the presence of ESBLs varies between countries. In this study, we investigated the occurrence of plasmid-mediated ESBL/AmpC/carbapenemase/aminoglycoside resistance gene expression in Escherichia coli using phenotypic and genotypic techniques.

Methods: A total of 58 E. coli isolates were collected from hospitals in the city of Makkah and screened for the production of ESBL/AmpC/carbapenemase/aminoglycoside resistance genes. All samples were subjected to phenotypic and genotypic analyses. The antibiotic susceptibility of the E. coli isolates was determined using the Vitek-2 system and the minimum inhibitory concentration (MIC) assay. Antimicrobial agents tested using the Vitek 2 system and MIC assay included the expanded-spectrum (or third-generation) cephalosporins (e.g., cefoxitin, cefepime, aztreonam, cefotaxime, ceftriaxone, and ceftazidime) and carbapenems (meropenem and imipenem). Reported positive isolates were investigated using genotyping technology (oligonucleotide microarray-based assay and PCR). The genotyping investigation was focused on ESBL variants and the AmpC, carbapenemase and aminoglycoside resistance genes. E. coli was phylogenetically grouped, and the clonality of the isolates was studied using multilocus sequence typing (MLST).

Results: Our E. coli isolates exhibited different levels of resistance to ESBL drugs, including ampicillin (96.61%), cefoxitin (15.25%), ciprofloxacin (79.66%), cefepime (75.58%), aztreonam (89.83%), cefotaxime (76.27%), ceftazidime (81.36%), meropenem (0%) and imipenem (0%). Furthermore, the distribution of ESBL-producing E. coli was consistent with the data obtained using an oligonucleotide microarray-based assay and PCR genotyping against genes associated with β-lactam resistance. ST131 was the dominant sequence type lineage of the isolates and was the most uropathogenic E. coli lineage. The E. coli isolates also carried aminoglycoside resistance genes.

Conclusions: The evolution and prevalence of ESBL-producing E. coli may be rapidly accelerating in Saudi Arabia due to the high visitation seasons (especially to the city of Makkah). The health authority in Saudi Arabia should monitor the level of drug resistance in all general hospitals to reduce the increasing trend of microbial drug resistance and the impact on patient therapy.

Keywords: E. coli; ESBL; Genotyping; K. pneumonia; Phenotyping; Saudi Arabia.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
The level of E. coli resistance (in percentages) compared with the major ESBL drugs based on the MIC tests. No carbapenase phenotype was detected but Ciprofloxacin-resistance (fluoroquinolone resistance) was identified among the E. coli isolates
Fig. 2
Fig. 2
The distribution of the 58 ESBL-producing E. coli isolates investigated via oligonucleotide microarray-based assay and PCR genotyping against genes associated with β-lactam resistance
Fig. 3
Fig. 3
a Quadruples PCR profiles of 58 E. coli MDR isolates. Isolate IDs shown under each lane. Data assignment were performed according to the presence or absence of signals of the following gene order arpA, chuA, yjaA, TspE4.C2. Row 1, lanes 1, 12—group A (+−−−); lanes 211, 13, 15—groups A or C (+−+−), lanes 1622—group B1 (+−+), lane 14—group B2 (−+++), lanes 2324—group F (−+−); Row 2, lanes 12—group F (−+−), lanes 324—group B2 (−+++) or (−++−) in lane 7; Row 3, lanes 14—group B2 (−+++), lanes 58—groups E or D (++−+), lanes 910—groups A or C (+−+−). b Groups A/C differentiation. In all lanes, both bands for internal control and Group C specific trpA fragment (219 bp) are present. c Groups D/E differentiation. Lanes 1, 3 and 4—both bands for internal control and Group E specific arpA fragment (301 bp) are present. Lane 2—only internal control present
Fig. 4
Fig. 4
Prevalence of genes associated with aminoglycoside resistance
Fig. 5
Fig. 5
Phylogenetic tree of 58 MDR E. coli strains constructed using the maximum likelihood algorithm in the MEGA6 software [27] and based on the concatenated alleles of 7 housekeeping genes according to Achtman’s scheme (columns 410). The numerals on the branches represent bootstrap values. The phylogenetic analysis identified 24 ST (column 11) that corresponded to 11 ST complexes (STc, column 12). Phylogenetic groups in column 2 were identified using phylo-typing method [24] by quadruplex PCR using four target genes (arpA±, chuA±, yjaA±, TspE4.C2±). Strains incorrectly assigned using the extended quadruplex method are indicated in red. The phylo-group memberships of two isolates (1097, 1125) were ambiguous. Notably, E. coli Clone ST131, ST410, and ST1193, which are disseminated globally, were among the identified STs in this study

Similar articles

Cited by

References

    1. Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008;8(3):159–166. doi: 10.1016/S1473-3099(08)70041-0. - DOI - PubMed
    1. Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection. 1983;11(6):315–317. doi: 10.1007/BF01641355. - DOI - PubMed
    1. Philippon A, Labia R, Jacoby G. Extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1989;33(8):1131. doi: 10.1128/AAC.33.8.1131. - DOI - PMC - PubMed
    1. Drawz SM, Papp-Wallace KM, Bonomo RA. New beta-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob Agents Chemother. 2014;58(4):1835–1846. doi: 10.1128/AAC.00826-13. - DOI - PMC - PubMed
    1. Rawat D, Nair D. Extended-spectrum beta-lactamases in Gram Negative Bacteria. J Glob Infect Dis. 2010;2(3):263–274. doi: 10.4103/0974-777X.68531. - DOI - PMC - PubMed

MeSH terms