Graphics Processing Unit-Accelerated Code for Computing Second-Order Wiener Kernels and Spike-Triggered Covariance
- PMID: 28068420
- PMCID: PMC5222505
- DOI: 10.1371/journal.pone.0169842
Graphics Processing Unit-Accelerated Code for Computing Second-Order Wiener Kernels and Spike-Triggered Covariance
Abstract
Sensory neuroscience seeks to understand and predict how sensory neurons respond to stimuli. Nonlinear components of neural responses are frequently characterized by the second-order Wiener kernel and the closely-related spike-triggered covariance (STC). Recent advances in data acquisition have made it increasingly common and computationally intensive to compute second-order Wiener kernels/STC matrices. In order to speed up this sort of analysis, we developed a graphics processing unit (GPU)-accelerated module that computes the second-order Wiener kernel of a system's response to a stimulus. The generated kernel can be easily transformed for use in standard STC analyses. Our code speeds up such analyses by factors of over 100 relative to current methods that utilize central processing units (CPUs). It works on any modern GPU and may be integrated into many data analysis workflows. This module accelerates data analysis so that more time can be spent exploring parameter space and interpreting data.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures


Similar articles
-
Understanding spike-triggered covariance using Wiener theory for receptive field identification.J Vis. 2015;15(9):16. doi: 10.1167/15.9.16. J Vis. 2015. PMID: 26230978 Free PMC article.
-
Selectivity for temporal characteristics of sound and interaural time difference of auditory midbrain neurons in the grassfrog: a system theoretical approach.Hear Res. 1992 Jul;60(2):178-98. doi: 10.1016/0378-5955(92)90020-n. Hear Res. 1992. PMID: 1639728
-
Wiener kernel analysis of responses from anteroventral cochlear nucleus neurons.Hear Res. 1984 May;14(2):155-74. doi: 10.1016/0378-5955(84)90014-5. Hear Res. 1984. PMID: 6746429
-
The immediate effects of acoustic trauma on excitation and inhibition in the inferior colliculus: A Wiener-kernel analysis.Hear Res. 2016 Jan;331:47-56. doi: 10.1016/j.heares.2015.10.007. Epub 2015 Oct 30. Hear Res. 2016. PMID: 26523371
-
Graphics processing units in bioinformatics, computational biology and systems biology.Brief Bioinform. 2017 Sep 1;18(5):870-885. doi: 10.1093/bib/bbw058. Brief Bioinform. 2017. PMID: 27402792 Free PMC article. Review.
Cited by
-
Asymmetric ON-OFF processing of visual motion cancels variability induced by the structure of natural scenes.Elife. 2019 Oct 15;8:e47579. doi: 10.7554/eLife.47579. Elife. 2019. PMID: 31613221 Free PMC article.
-
The Neuronal Basis of an Illusory Motion Percept Is Explained by Decorrelation of Parallel Motion Pathways.Curr Biol. 2018 Dec 3;28(23):3748-3762.e8. doi: 10.1016/j.cub.2018.10.007. Epub 2018 Nov 21. Curr Biol. 2018. PMID: 30471993 Free PMC article.
-
Using slow frame rate imaging to extract fast receptive fields.Nat Commun. 2019 Oct 31;10(1):4979. doi: 10.1038/s41467-019-12974-0. Nat Commun. 2019. PMID: 31672963 Free PMC article.
References
-
- Dayan P, Abbott LF. Theoretical neuroscience: Cambridge, MA: MIT Press; 2001.
-
- Marmarelis VZ. Nonlinear Dynamic Modeling of Physiological Systems. Piscataway, NJ: IEEE Press; 2004.
-
- Wiener N. Nonlinear problems in random theory Nonlinear Problems in Random Theory, by Wiener Norbert, pp 142 ISBN 0-262-73012-X Cambridge, Massachusetts, USA: The MIT Press, August 1966(Paper). 1966;1.
-
- Simoncelli EP, Paninski L, Pillow J, Schwartz O. Characterization of neural responses with stochastic stimuli. The cognitive neurosciences. 2004;3:327–38.
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources