Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2017 Jan 10;19(1):1.
doi: 10.1186/s13075-016-1210-z.

Advanced Knee Structure Analysis (AKSA): a comparison of bone mineral density and trabecular texture measurements using computed tomography and high-resolution peripheral quantitative computed tomography of human knee cadavers

Affiliations
Comparative Study

Advanced Knee Structure Analysis (AKSA): a comparison of bone mineral density and trabecular texture measurements using computed tomography and high-resolution peripheral quantitative computed tomography of human knee cadavers

Torsten Lowitz et al. Arthritis Res Ther. .

Abstract

Background: A change of loading conditions in the knee causes changes in the subchondral bone and may be a cause of osteoarthritis (OA). However, quantification of trabecular architecture in vivo is difficult due to the limiting spatial resolution of the imaging equipment; one approach is the use of texture parameters. In previous studies, we have used digital models to simulate changes of subchondral bone architecture under OA progression. One major result was that, using computed tomography (CT) images, subchondral bone mineral density (BMD) in combination with anisotropy and global homogeneity could characterize this progression. The primary goal of this study was a comparison of BMD, entropy, anisotropy, variogram slope, and local and global inhomogeneity measurements between high-resolution peripheral quantitative CT (HR-pQCT) and CT using human cadaveric knees. The secondary goal was the verification of the spatial resolution dependence of texture parameters observed in the earlier simulations, two important prerequisites for the interpretation of in vivo measurements in OA patients.

Method: The applicability of texture analysis to characterize bone architecture in clinical CT examinations was investigated and compared to results obtained from HR-pQCT. Fifty-seven human knee cadavers (OA status unknown) were examined with both imaging modalities. Three-dimensional (3D) segmentation and registration processes, together with automatic positioning of 3D analysis volumes of interest (VOIs), ensured the measurement of BMD and texture parameters at the same anatomical locations in CT and HR-pQCT datasets.

Results: According to the calculation of dice ratios (>0.978), the accuracy of VOI locations between methods was excellent. Entropy, anisotropy, and global inhomogeneity showed significant and high linear correlation between both methods (0.68 < R 2 < 1.00). The resolution dependence of these parameters simulated earlier was confirmed by the in vitro measurements.

Conclusion: The high correlation of HR-pQCT- and CT-based measurements of entropy, global inhomogeneity, and anisotropy suggests interchangeability between devices regarding the quantification of texture. The agreement of the experimentally determined resolution dependence of global inhomogeneity and anisotropy with earlier simulations is an important milestone towards their use to quantify subchondral bone structure. However, an in vivo study is still required to establish their clinical relevance.

Keywords: Computed tomography; High-resolution peripheral quantitative computed tomography; Knee OA; Subchondral bone; Texture.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Axial slice of one specimen obtained from clinical CT using a high-resolution kernel (a) and from HR-pQCT (b)
Fig. 2
Fig. 2
Multi-planar reformations: transversal (left), coronal (center) and sagittal (right). Top CT dataset with segmented periosteal/articular surface (red) and analysis VOIs (blue); for the CT reconstruction, the high-resolution kernel U70u was applied. Bottom HR-pQCT dataset of the same knee (repositioned) with periosteal/articular surface registered (red) and analysis VOIs (blue) transferred from the CT dataset. The names of the analyses VOIs are only indicated in the femur (top, center) but apply to the tibia as well. For the purpose of illustration, the HR-pQCT was downsampled to the same size as the CT dataset. Each CT image has 512 × 512 pixels with a size of 254 × 254 μm2 each, while the HR-pQCT image consists of 1352 × 1484 pixels with a size of 82 × 82 μm2. Navigation lines were added to every image in order to indicate the relative positions of the reformed slices. cort cortical, mid-epi mid-epiphyseal, sub epi subchondral epiphyseal
Fig. 3
Fig. 3
a Measured BMD across VOIs for CT and HR-pQCT in tibia and femur with error bars as standard deviations from 57 cadavers. b HR-pQCT results unchanged, CT results corrected by the equation obtained from linear regression in (c). c Linear regression analysis of BMD results. d Bland-Altman plots for corrected trabecular BMD. Upper (lower) LOA: 95% upper (lower) confidence limit (LOA = 1.96 × standard deviation of difference). %err = LOA divided by the mean BMDHR-pQCT. med medial, lat lateral, LOA limit of agreement, S1 subchondral epiphyseal, S2 mid-epiphyseal, S3 juxtaphyseal
Fig. 4
Fig. 4
Texture parameters measured with CT or HR-pQCT in the VOIs shown in Fig. 2
Fig. 5
Fig. 5
Comparison (using Bland-Altman plots) of texture parameters measured with CT and HR-pQCT. MEAN mean of CT and HR-pQCT measurements, DIFFERENCE CT measurement in CT – HR-pQCT measurement
Fig. 6
Fig. 6
Texture parameter ratios D between HR-pQCT and CT measurements. Bars are mean values for 40 digital models simulating a wide variety of trabecular architectures and mean values from twelve trabecular VOIs of 57 cadaveric datasets, respectively. Error bars represent the respective standard deviations. A value of 1 means that the texture parameter does not depend on spatial resolution within the investigated range from about 100 μm (HR-pQCT) to 400 μm (CT)

Similar articles

Cited by

References

    1. Chiba K, Ito M, Osaki M, Uetani M, Shindo H. In vivo structural analysis of subchondral trabecular bone in osteoarthritis of the hip using multi-detector row CT. Osteoarthritis Cartilage. 2011;19:180–5. doi: 10.1016/j.joca.2010.11.002. - DOI - PubMed
    1. Djuric M, Zagorac S, Milovanovic P, Djonic D, Nikolic S, Hahn M, et al. Enhanced trabecular micro-architecture of the femoral neck in hip osteoarthritis vs. healthy controls: a micro-computer tomography study in postmenopausal women. Int Orthop. 2013;37:21–6. doi: 10.1007/s00264-012-1713-4. - DOI - PMC - PubMed
    1. Li ZC, Dai LY, Jiang LS, Qiu S. Difference in subchondral cancellous bone between postmenopausal women with hip osteoarthritis and osteoporotic fracture: implication for fatigue microdamage, bone microarchitecture, and biomechanical properties. Arthritis Rheum. 2012;64:3955–62. doi: 10.1002/art.34670. - DOI - PubMed
    1. Cox LG, van Donkelaar CC, van Rietbergen B, Emans PJ, Ito K. Alterations to the subchondral bone architecture during osteoarthritis: bone adaptation vs endochondral bone formation. Osteoarthritis Cartilage. 2013;21:331–8. doi: 10.1016/j.joca.2012.10.013. - DOI - PubMed
    1. Hirvasniemi J, Thevenot J, Kokkonen HT, Finnila MA, Venalainen MS, Jamsa T, et al. Correlation of subchondral bone density and structure from plain radiographs with micro computed tomography ex vivo. Ann Biomed Eng. 2016;44:1698-709. - PMC - PubMed

Publication types