Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar;4(1):65-83.
doi: 10.1007/s40708-016-0059-x. Epub 2017 Jan 10.

Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage

Affiliations

Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage

Priya Aggarwal et al. Brain Inform. 2017 Mar.

Abstract

This paper presents a new accelerated fMRI reconstruction method, namely, OptShrink LR + S method that reconstructs undersampled fMRI data using a linear combination of low-rank and sparse components. The low-rank component has been estimated using non-convex optimal singular value shrinkage algorithm, while the sparse component has been estimated using convex l 1 minimization. The performance of the proposed method is compared with the existing state-of-the-art algorithms on real fMRI dataset. The proposed OptShrink LR + S method yields good qualitative and quantitative results.

Keywords: Accelerated functional MRI; Compressed sensing; Low-rank recovery; Sparse recovery; Undersampling; k–t acceleration.

PubMed Disclaimer

Conflict of interest statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Figures

Fig. 1
Fig. 1
Radial sampling pattern on one slice: a 6 radial lines (12.856 acceleration factor); b 12 radial lines (6.065 acceleration factor); c 24 radial lines (3.495 acceleration factor)
Fig. 2
Fig. 2
Objective function value versus number of iterations
Fig. 3
Fig. 3
Task-based fMRI data–original and reconstructed slice no. 18 [left to right Original; LR + S; Optshrink LR + S (rank = 1); Optshrink LR + S (rank = 2); Optshrink LR + S (rank = 3)]: a 6 radial lines (time point 100); b 12 radial lines (time point 100); c 24 radial lines (time point 100)
Fig. 4
Fig. 4
Resting-state fMRI data—original and reconstructed slice no. 24 [left to right Original; LR + S; Optshrink LR + S (rank = 1); Optshrink LR + S (rank = 2); Optshrink LR + S (rank = 3)]: a 6 radial lines (time point 100); b 12 radial lines (time point 100); c 24 radial lines (time point 100)
Fig. 5
Fig. 5
Normalized mean square error versus time points on task-based fMRI dataset (slice no. 18): a 6 radial lines (12.856 acceleration factor); b 12 radial lines (6.065 acceleration factor); c 24 radial lines (3.495 acceleration factor)
Fig. 6
Fig. 6
Normalized mean square error versus time points on resting-state fMRI dataset (slice no. 24): a 6 radial lines (12.856 acceleration factor); b 12 radial lines (6.065 acceleration factor); c 24 radial lines (3.495 acceleration factor)
Fig. 7
Fig. 7
Task-based fMRI dataset, slice no. 18, time point 100: NMSE versus rank of the proposed Optshrink LR + S method using 6 radial lines
Fig. 8
Fig. 8
Resting-state fMRI dataset—slice no. 24, time point 100: NMSE versus rank of the proposed Optshrink LR + S method using 6 radial lines
Fig. 9
Fig. 9
Task-based fMRI dataset—slice no. 18: NMSE versus subject number with the proposed Optshrink LR + S method (rank = 1) using 6 radial lines
Fig. 10
Fig. 10
Resting-state fMRI dataset—slice no. 24: NMSE versus subject number with the proposed Optshrink LR + S method (rank = 1) using 6 radial lines
Fig. 11
Fig. 11
Design matrix of task-based fMRI dataset (false belief task)
Fig. 12
Fig. 12
False belief fMRI data shown on sagittal, coronal, and axial planes: a fully sampled fMRI data; b smoothed fully sampled fMRI data; c reconstructed fMRI data using LR + S (6 radial lines) (without smoothing); d reconstructed fMRI data using LR + S (6 radial lines) (with smoothing); e reconstructed fMRI data using proposed Optshrink LR + S method (rank = 1) (6 radial lines) (without smoothing); f reconstructed fMRI data using proposed Optshrink LR + S method (rank = 1) (6 radial lines) (with smoothing)
Fig. 13
Fig. 13
False belief fMRI data shown on sagittal, coronal, and axial planes: a fully sampled fMRI data; b smoothed fully sampled fMRI data; c reconstructed fMRI data using LR + S (12 radial lines) (without smoothing); d reconstructed fMRI data using LR + S (12 radial lines) (with smoothing); e reconstructed fMRI data using proposed Optshrink LR + S method (rank = 1) (12 radial lines) (without smoothing); (f) reconstructed fMRI data using proposed Optshrink LR + S method (rank = 1) (12 radial lines) (with smoothing)
Fig. 14
Fig. 14
False belief fMRI data shown on sagittal, coronal, and axial planes: a fully sampled fMRI data; b smoothed fully sampled fMRI data; c reconstructed fMRI data using LR + S (24 radial lines) (without smoothing); d reconstructed fMRI data using LR + S (24 radial lines) (with smoothing); e reconstructed fMRI data using proposed Optshrink LR + S method (rank = 1) (24 radial lines) (without smoothing); f reconstructed fMRI data using proposed Optshrink LR + S method (rank = 1) (24 radial lines) (with smoothing)
Fig. 15
Fig. 15
Axial view of spatial maps of various RSNs where left part of each figure is from the original fully available dataset and right part is from the Optshrink LR + S reconstructed data
Fig. 16
Fig. 16
Axial view of spatial maps of various RSNs where left part of each figure is from the original fully available dataset and right part is from the Optshrink LR + S reconstructed data

References

    1. Feinberg DA, Yacoub E. The rapid development of high speed, resolution and precision in fMRI. NeuroImage. 2012;62(2):720–725. doi: 10.1016/j.neuroimage.2012.01.049. - DOI - PMC - PubMed
    1. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 1990;87(24):9868–9872. doi: 10.1073/pnas.87.24.9868. - DOI - PMC - PubMed
    1. Worsley K, Friston K. Analysis of fMRI time-series revisited—again. NeuroImage. 1995;2(3):173–181. doi: 10.1006/nimg.1995.1023. - DOI - PubMed
    1. Frank LR, Buxton RB, Wong EC. Estimation of respiration-induced noise fluctuations from undersampled multislice fMRI data. Magn Reson Med. 2001;45(4):635–644. doi: 10.1002/mrm.1086. - DOI - PubMed
    1. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P, et al. Sense: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–962. doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S. - DOI - PubMed

LinkOut - more resources