Hypoxia and cellular metabolism in tumour pathophysiology
- PMID: 28074546
- PMCID: PMC5390873
- DOI: 10.1113/JP273309
Hypoxia and cellular metabolism in tumour pathophysiology
Abstract
Cancer cells are optimised for growth and survival via an ability to outcompete normal cells in their microenvironment. Many of these advantageous cellular adaptations are promoted by the pathophysiological hypoxia that arises in solid tumours due to incomplete vascularisation. Tumour cells are thus faced with the challenge of an increased need for nutrients to support the drive for proliferation in the face of a diminished extracellular supply. Among the many modifications occurring in tumour cells, hypoxia inducible factors (HIFs) act as essential drivers of key pro-survival pathways via the promotion of numerous membrane and cytosolic proteins. Here we focus our attention on two areas: the role of amino acid uptake and the handling of metabolic acid (CO2 /H+ ) production. We provide evidence for a number of hypoxia-induced proteins that promote cellular anabolism and regulation of metabolic acid-base levels in tumour cells including amino-acid transporters (LAT1), monocarboxylate transporters, and acid-base regulating carbonic anhydrases (CAs) and bicarbonate transporters (NBCs). Emphasis is placed on current work manipulating multiple CA isoforms and NBCs, which is at an interesting crossroads of gas physiology as they are regulated by hypoxia to contribute to the cellular handling of CO2 and pHi regulation. Our research combined with others indicates that targeting of HIF-regulated membrane proteins in tumour cells will provide promising future anti-cancer therapeutic approaches and we suggest strategies that could be potentially used to enhance these tactics.
Keywords: amino-acid transport; cell proliferation; pH regulation; tumour hypoxia.
© 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Figures
References
-
- Ahmed S, Thomas G, Ghoussaini M, Healey CS, Humphreys MK, Platte R, Morrison J, Maranian M, Pooley KA, Luben R, Eccles D, Evans DG, Fletcher O, Johnson N, dos Santos Silva I, Peto J, Stratton MR, Rahman N, Jacobs K, Prentice R, Anderson GL, Rajkovic A, Curb JD, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Diver WR, Bojesen S, Nordestgaard BG, Flyger H, Dork T, Schurmann P, Hillemanns P, Karstens JH, Bogdanova NV, Antonenkova NN, Zalutsky IV, Bermisheva M, Fedorova S, Khusnutdinova E, Kang D, Yoo KY, Noh DY, Ahn SH, Devilee P, van Asperen CJ, Tollenaar RA, Seynaeve C, Garcia‐Closas M, Lissowska J, Brinton L, Peplonska B, Nevanlinna H, Heikkinen T, Aittomaki K, Blomqvist C, Hopper JL, Southey MC, Smith L, Spurdle AB, Schmidt MK, Broeks A, van Hien RR, Cornelissen S, Milne RL, Ribas G, Gonzalez‐Neira A, Benitez J, Schmutzler RK, Burwinkel B, Bartram CR, Meindl A, Brauch H, Justenhoven C, Hamann U, Chang‐Claude J, Hein R, Wang‐Gohrke S, Lindblom A, Margolin S, Mannermaa A, Kosma VM, Kataja V, Olson JE, Wang X, Fredericksen Z, Giles GG, Severi G, Baglietto L, English DR, Hankinson SE, Cox DG, Kraft P, Vatten LJ, Hveem K, Kumle M, Sigurdson A, Doody M, Bhatti P, Alexander BH, Hooning MJ, van den Ouweland AM, Oldenburg RA, Schutte M, Hall P, Czene K, Liu J, Li Y, Cox A, Elliott G, Brock I, Reed MW, Shen CY, Yu JC, Hsu GC, Chen ST, Anton‐Culver H, Ziogas A, Andrulis IL, Knight JA, Beesley J, Goode EL, Couch F, Chenevix‐Trench G, Hoover RN, Ponder BA, Hunter DJ, Pharoah PD, Dunning AM, Chanock SJ & Easton DF (2009). Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet 41, 585–590. - PMC - PubMed
-
- Babu E, Bhutia YD, Ramachandran S, Gnanaprakasam JP, Prasad PD, Thangaraju M & Ganapathy V (2015). Deletion of the amino acid transporter Slc6a14 suppresses tumour growth in spontaneous mouse models of breast cancer. Biochem J 469, 17–23. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials