Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Dec;57(12):3888-93.
doi: 10.1128/iai.57.12.3888-3893.1989.

Purification of Shiga toxin and Shiga-like toxins I and II by receptor analog affinity chromatography with immobilized P1 glycoprotein and production of cross-reactive monoclonal antibodies

Affiliations

Purification of Shiga toxin and Shiga-like toxins I and II by receptor analog affinity chromatography with immobilized P1 glycoprotein and production of cross-reactive monoclonal antibodies

A Donohue-Rolfe et al. Infect Immun. 1989 Dec.

Abstract

Shiga toxin from Shigella dysenteriae 60R was purified to homogeneity by a novel one-step receptor analog affinity chromatography method. The method was based on the binding affinity of Shiga toxin for a specific disaccharide, Gal alpha 1----4Gal, which was also present in glycoproteins with P1 blood group seroreactivity produced in hydatid cysts from sheep infected with Echinococcus granulosus. Having shown that cyst fluid P1 glycoprotein bound Shiga toxin on a solid phase, a P1 glycoprotein affinity column was made by coupling P1-active substance to Sepharose 4B. Shiga toxin was purified by this method in large quantities (5 to 10 mg/20-liter batch) with a consistently good yield (greater than 80% of starting toxin). Shiga-like toxins I and II (SLT-I and -II, respectively) from Escherichia coli were also purified by the same method. A preparation containing SLT-II and SLT-I purified by receptor analog affinity chromatography was used to raise four monoclonal antibodies (MAbs) that were reactive with SLT-II by enzyme-linked immunosorbent assay. Three of these antibodies also reacted with Shiga toxin, which was the first clear demonstration of cross-reactivity between these toxins. One MAb, 4D1, which was specific for the B subunit of SLT-II and Shiga toxin, neutralized both toxins in a HeLa cell cytotoxicity assay. Two MAbs recognized the A subunit of both SLT-II and Shiga toxin by Western blot (immunoblot) analysis but were unable to neutralize either toxin. In addition, one B-subunit-specific MAb neutralized SLT-II alone, and a previously described Shiga toxin B-subunit-specific MAb was shown to be specific for Shiga toxin but not SLT-II.

PubMed Disclaimer

References

    1. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1289-96 - PubMed
    1. Bibl Haematol. 1964;19:225-9 - PubMed
    1. Infect Immun. 1980 Oct;30(1):170-9 - PubMed
    1. Semin Hematol. 1981 Jan;18(1):63-71 - PubMed
    1. Infect Immun. 1982 Jun;36(3):996-1005 - PubMed

Publication types

LinkOut - more resources