Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan 5:31:e7.
doi: 10.1590/1807-3107BOR-2017.vol31.0007.

The efficacy of low-level 940 nm laser therapy with different energy intensities on bone healing

Affiliations
Free article

The efficacy of low-level 940 nm laser therapy with different energy intensities on bone healing

Kerem Turgut Atasoy et al. Braz Oral Res. .
Free article

Abstract

The aim of this study was to evaluate the efficacy of low-level 940 nm laser therapy with energy intensities of 5, 10 and 20 J/cm2 on bone healing in an animal model. A total of 48 female adult Wistar rats underwent surgery to create bone defects in the right tibias. Low-level laser therapy (LLLT) was applied immediately after surgery and on post-operative days 2, 4, 6, 8, 10 and 12 in three study groups with energy intensities of 5 J/cm2, 10 J/cm2 and 20 J/cm2 using a 940 nm Gallium-Aluminium-Arsenide (Ga-Al-As) laser, while one control group underwent only the tibia defect surgery. All animals were sacrificed 4 or 8 weeks post-surgery. Fibroblasts, osteoblasts, osteocytes, osteoclasts and newly formed vessels were evaluated by a histological examination. No significant change was observed in the number of osteocytes, osteoblasts, osteoclasts and newly formed vessels at either time period across all laser groups. Although LLLT with the 10 J/cm2 energy density increased fibroblast activity at the 4th week in comparison with the 5 and 20 J/cm2 groups, no significant change was observed between the laser groups and the control group. These results indicate that low-level 940 nm laser with different energy intensities may not have marked effects on the bone healing process in both phases of bone formation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources