Surface-Enhanced Hyper-Raman Spectra of Adenine, Guanine, Cytosine, Thymine, and Uracil
- PMID: 28077982
- PMCID: PMC5215682
- DOI: 10.1021/acs.jpcc.6b02753
Surface-Enhanced Hyper-Raman Spectra of Adenine, Guanine, Cytosine, Thymine, and Uracil
Abstract
Using picosecond excitation at 1064 nm, surface-enhanced hyper-Raman scattering (SEHRS) spectra of the nucleobases adenine, guanine, cytosine, thymine, and uracil with two different types of silver nanoparticles were obtained. Comparing the SEHRS spectra with SERS data from the identical samples excited at 532 nm and with known infrared spectra, the major bands in the spectra are assigned. Due to the different selection rules for the one- and two-photon excited Raman scattering, we observe strong variation in relative signal strengths of many molecular vibrations obtained in SEHRS and SERS spectra. The two-photon excited spectra of the nucleobases are found to be very sensitive with respect to molecule-nanoparticle interactions. Using both the SEHRS and SERS data, a comprehensive vibrational characterization of the interaction of nucleobases with silver nanostructures can be achieved.
Conflict of interest statement
The authors declare no competing financial interest.
Figures






Similar articles
-
Combined near-infrared excited SEHRS and SERS spectra of pH sensors using silver nanostructures.Phys Chem Chem Phys. 2015 Oct 21;17(39):26093-100. doi: 10.1039/c5cp03844h. Epub 2015 Sep 17. Phys Chem Chem Phys. 2015. PMID: 26377486 Free PMC article.
-
Surface-Enhanced Hyper Raman Spectra of Aromatic Thiols on Gold and Silver Nanoparticles.J Phys Chem C Nanomater Interfaces. 2020 Mar 19;124(11):6233-6241. doi: 10.1021/acs.jpcc.0c00294. Epub 2020 Feb 25. J Phys Chem C Nanomater Interfaces. 2020. PMID: 32395194 Free PMC article.
-
Surface-Enhanced Raman and Surface-Enhanced Hyper-Raman Scattering of Thiol-Functionalized Carotene.J Phys Chem C Nanomater Interfaces. 2016 Sep 22;120(37):20702-20709. doi: 10.1021/acs.jpcc.6b01895. Epub 2016 Apr 22. J Phys Chem C Nanomater Interfaces. 2016. PMID: 28077983 Free PMC article.
-
Exploring Excited State Landscapes with Surface Enhanced Hyper-Raman Spectroscopy.ACS Nano. 2024 Aug 13;18(32):20827-20834. doi: 10.1021/acsnano.4c06429. Epub 2024 Aug 1. ACS Nano. 2024. PMID: 39088723 Review.
-
Surface Enhanced Nonlinear Raman Processes for Advanced Vibrational Probing.ACS Nano. 2024 Aug 13;18(32):20851-20860. doi: 10.1021/acsnano.4c07508. Epub 2024 Aug 1. ACS Nano. 2024. PMID: 39088308 Free PMC article. Review.
Cited by
-
Sandwiching analytes with structurally diverse plasmonic nanoparticles on paper substrates for surface enhanced Raman spectroscopy.RSC Adv. 2019 Oct 11;9(56):32535-32543. doi: 10.1039/c9ra05399a. eCollection 2019 Oct 10. RSC Adv. 2019. PMID: 35529713 Free PMC article.
-
Wafer-scale silver nanodendrites with homogeneous distribution of gold nanoparticles for biomolecules detection.iScience. 2022 Aug 3;25(8):104849. doi: 10.1016/j.isci.2022.104849. eCollection 2022 Aug 19. iScience. 2022. PMID: 35996576 Free PMC article.
-
Plasmonic Metasurfaces Based on Pyramidal Nanoholes for High-Efficiency SERS Biosensing.ACS Appl Mater Interfaces. 2021 Sep 15;13(36):43715-43725. doi: 10.1021/acsami.1c12525. Epub 2021 Sep 1. ACS Appl Mater Interfaces. 2021. PMID: 34469103 Free PMC article.
-
Activity and Mechanism of Action of the Bioceramic Silicon Nitride as an Environmentally Friendly Alternative for the Control of the Grapevine Downy Mildew Pathogen Plasmopara viticola.Front Microbiol. 2020 Dec 14;11:610211. doi: 10.3389/fmicb.2020.610211. eCollection 2020. Front Microbiol. 2020. PMID: 33381101 Free PMC article.
-
Off-Stoichiometric Reactions at the Cell-Substrate Biomolecular Interface of Biomaterials: In Situ and Ex Situ Monitoring of Cell Proliferation, Differentiation, and Bone Tissue Formation.Int J Mol Sci. 2019 Aug 21;20(17):4080. doi: 10.3390/ijms20174080. Int J Mol Sci. 2019. PMID: 31438530 Free PMC article.
References
-
- Fodor S. P. A.; Spiro T. G. Ultraviolet Resonance Raman Spectroscopy of DNA with 200–266-nm Laser Excitation. J. Am. Chem. Soc. 1986, 108, 3198–3205. 10.1021/ja00272a006. - DOI
-
- Nishimura Y.; Tsuboi M.; Kubasek W. L.; Bajdor K.; Peticolas W. L. Ultraviolet Resonance Raman Bands of Guanosine and Adenosine Residues Useful for the Determination of Nucleic Acid Conformation. J. Raman Spectrosc. 1987, 18, 221–227. 10.1002/jrs.1250180314. - DOI
-
- Benevides J. M.; Overman S. A.; Thomas G. J. Raman, Polarized Raman and Ultraviolet Resonance Raman Spectroscopy of Nucleic Acids and Their Complexes. J. Raman Spectrosc. 2005, 36, 279–299. 10.1002/jrs.1324. - DOI
-
- Fleischmann M.; Hendra P. J.; McQuillan A. J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163–166. 10.1016/0009-2614(74)85388-1. - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous