Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security
- PMID: 28080995
- PMCID: PMC5095548
- DOI: 10.1098/rstb.2016.0026
Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security
Abstract
Agricultural ecosystems are composed of genetically depauperate populations of crop plants grown at a high density and over large spatial scales, with the regional composition of crop species changing little from year to year. These environments are highly conducive for the emergence and dissemination of pathogens. The uniform host populations facilitate the specialization of pathogens to particular crop cultivars and allow the build-up of large population sizes. Population genetic and genomic studies have shed light on the evolutionary mechanisms underlying speciation processes, adaptive evolution and long-distance dispersal of highly damaging pathogens in agro-ecosystems. These studies document the speed with which pathogens evolve to overcome crop resistance genes and pesticides. They also show that crop pathogens can be disseminated very quickly across and among continents through human activities. In this review, we discuss how the peculiar architecture of agro-ecosystems facilitates pathogen emergence, evolution and dispersal. We present four example pathosystems that illustrate both pathogen specialization and pathogen speciation, including different time frames for emergence and different mechanisms underlying the emergence process. Lastly, we argue for a re-design of agro-ecosystems that embraces the concept of dynamic diversity to improve their resilience to pathogens. This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.
Keywords: agricultural ecosystems; dynamic diversity; fungal pathogens; pathogen emergence; pathogen evolution; population genetics.
© 2016 The Author(s).
Figures
References
-
- Benton TG, Vickery JA, Wilson JD. 2003. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188. ( 10.1016/S0169-5347(03)00011-9) - DOI
-
- van de Wouw M, Kik C, van Hintum T, van Treuren R, Visser B. 2010. Genetic erosion in crops: concept, research results and challenges. Plant Genet. Resour. 8, 1–15. ( 10.1017/S1479262109990062) - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical