Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan 12;9(1):2.
doi: 10.1186/s13073-016-0395-8.

Emerging links between m6A and misregulated mRNA methylation in cancer

Affiliations

Emerging links between m6A and misregulated mRNA methylation in cancer

Samie R Jaffrey et al. Genome Med. .

Abstract

N 6-methyladenosine (m6A) in mRNA has emerged as a crucial epitranscriptomic modification that controls cellular differentiation and pluripotency. Recent studies are pointing to a role for the RNA methylation program in cancer self-renewal and cell fate, making this a new and promising therapeutic avenue for investigation.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Cancer can be promoted by upregulating either N 6-methyladenosine (m 6 A) demethylases or methyltransferase proteins. In breast cancer, hypoxia increases the expression of ALKBH5 or ZNF217 through the activation of hypoxia-inducible factors (HIFs). ALKBH5 is an m6A demethylating enzyme, and ZNF217 inhibits the RNA methylation writer complex (RBM15–WTAP–METTL3–METTL14), resulting in a reduction of the levels of the m6A modification in the mRNA of breast cancer pluripotency transcripts NANOG and KLF4, promoting their stability and increased expression. This contributes to the reacquisition of the breast cancer stem cell phenotype in these cells. In myeloid leukemia, by contrast, increased levels of components of the m6A methylation machinery proteins (RBM15–WTAP–METTL3–METTL14) are present, suggesting misregulated and increased mRNA methylation. Thus, the increase in these proteins might alter the normal differentiation trajectory of hematopoietic stem cells, leading to abnormal fates, including leukemic blasts. (Arrows indicate activation; ‘lightning bolts’ indicate misregulation of the RNA methylation program)

References

    1. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. 2012;149:1635–1646. doi: 10.1016/j.cell.2012.05.003. - DOI - PMC - PubMed
    1. Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M, et al. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 2016;537:369–373. doi: 10.1038/nature19342. - DOI - PMC - PubMed
    1. Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature. 2016. doi: 10.1038/nature21022 - PMC - PubMed
    1. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, et al. 5′ UTR m(6)A promotes cap-independent translation. Cell. 2015;163:999–1010. doi: 10.1016/j.cell.2015.10.012. - DOI - PMC - PubMed
    1. Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, et al. Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science. 2015;347:1002–1006. doi: 10.1126/science.1261417. - DOI - PubMed