Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jan;24(1):10-15.
doi: 10.1016/j.cmi.2016.12.033. Epub 2017 Jan 7.

Glucose homeostasis, nutrition and infections during critical illness

Affiliations
Free article
Review

Glucose homeostasis, nutrition and infections during critical illness

C Ingels et al. Clin Microbiol Infect. 2018 Jan.
Free article

Abstract

Critical illness is a complex life-threatening disease characterized by profound endocrine and metabolic alterations and by a dysregulated immune response, together contributing to the susceptibility for nosocomial infections and sepsis. Hitherto, two metabolic strategies have been shown to reduce nosocomial infections in the critically ill, namely tight blood glucose control and early macronutrient restriction. Hyperglycaemia, as part of the endocrine-metabolic responses to stress, is present in virtually all critically ill patients and is associated with poor outcome. Maintaining normoglycaemia with intensive insulin therapy has been shown to reduce morbidity and mortality, by prevention of vital organ dysfunction and prevention of new severe infections. The favourable effects of this intervention were attributed to the avoidance of glucose toxicity and mitochondrial damage in cells of vital organs and in immune cells. Hyperglycaemia was shown to impair macrophage phagocytosis and oxidative burst capacity, which could be restored by targeting normoglycaemia. An anti-inflammatory effect of insulin may have contributed to prevention of collateral damage to host tissues. Not using parenteral nutrition during the first week in intensive care units, and so accepting a large macronutrient deficit, also resulted in fewer secondary infections, less weakness and accelerated recovery. This was at least partially explained by a suppressive effect of early parenteral nutrition on autophagic processes, which may have jeopardized crucial antimicrobial defences and cell damage removal. The beneficial impact of these two metabolic strategies has opened a new field of research that will allow us to improve the understanding of the determinants of nosocomial infections, sepsis and organ failure in the critically ill.

Keywords: Critical illness; Early macronutrient restriction; Endocrine alterations; Glucose homeostasis; Nutrition.

PubMed Disclaimer

MeSH terms

LinkOut - more resources